• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 038402 (2022)
Jianan Yuan1, Kang Xia2, Chi Ding1, Xiaomeng Wang1, Qing Lu1, and Jian Sun1、a)
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
  • 2Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China
  • show less
    DOI: 10.1063/5.0087168 Cite this Article
    Jianan Yuan, Kang Xia, Chi Ding, Xiaomeng Wang, Qing Lu, Jian Sun. High-energy-density metal nitrides with armchair chains[J]. Matter and Radiation at Extremes, 2022, 7(3): 038402 Copy Citation Text show less
    References

    [1] D. P.Stevenson. The strengths of chemical bonds. J. Am. Chem. Soc., 77, 2350(1955).

    [2] I. A.Trojan, A. G.Gavriliuk, R.Boehler, M. I.Eremets, D. A.Dzivenko. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).

    [3] V. B.Prakapenka, J. M.Zaug, I. I.Oleynik, B. A.Steele, E.Stavrou, J. C.Crowhurst. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2017).

    [4] M.Miao, E.Zurek, Y.Sun, H.Lin. Chemistry under high pressure. Nat. Rev. Chem., 4, 508-527(2020).

    [5] L. H.Yang, C.Mailhiot, A. K.McMahan. Polymeric nitrogen. Phys. Rev. B, 46, 14419-14435(1992).

    [6] K. O.Christe, J. A.Sheehy, W. W.Wilson, V.Vij, A.Vij, F. S.Tham. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc., 123, 6308-6313(2001).

    [7] G.Garbarino, G.Weck, P.Loubeyre, G.Gaiffe, D.Laniel. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).

    [8] Y.Ma, W.Lei, H.Liu, D.Liu, Y.Li, X.Feng, J.Hao, S. A. T.Redfern. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun., 9, 722(2018).

    [9] Y.Zhang, J.Sun, E.Greenberg, N. P.Salke, J. F.Lin, S.Fu, K.Xia, V. B.Prakapenka, J.Liu. Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure. Phys. Rev. Lett., 126, 065702(2021).

    [10] C.-S.Yoo, M.Kim, D.Tomasino, J.Smith. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).

    [11] G.Geneste, D.Laniel, G.Weck, M.Mezouar, P.Loubeyre. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).

    [12] D.Laniel, V.Prakapenka, S.Chariton, B.Winkler, L.Dubrovinsky, T.Fedotenko, V.Milman, A.Pakhomova, N.Dubrovinskaia. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).

    [13] J. S.Smith, Y.Yao, C.Ji, B.Wan, A. A.Adeleke, W. L.Mao, H. K.Mao, Y.Meng, V. B.Prakapenka, L.Yang, G.Shen, W.Liu, B.Li, H.Gou. Nitrogen in black phosphorus structure. Sci. Adv., 6, eaba9206(2020).

    [14] F.Peng, Y.Ma, H.Liu, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).

    [15] Y.Yao, F.Peng, H.Liu, S.Zhu, T.Gao, A.Majumdar. Stable calcium nitrides at ambient and high pressures. Inorg. Chem., 55, 7550-7555(2016).

    [16] B. A.Steele, I. I.Oleynik. Sodium pentazolate: A nitrogen rich high energy density material. Chem. Phys. Lett., 643, 21-26(2016).

    [17] M.Lu, B.Hu, C.Yu, C.Sun, C.Zhang. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science, 355, 374-376(2017).

    [18] Q.Lin, Q.Wang, C.Shen, P.Wang, M.Lu, Y.Xu. A series of energetic metal pentazolate hydrates. Nature, 549, 78-81(2017).

    [19] S.Wei, L.Lian, B.Liu, P.Hou, B.Wang, D.Li, Y.Cai. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv., 8, 4314-4320(2018).

    [20] G.Frapper, B.Huang. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).

    [21] Z.Liu, Y.Liu, D.Duan, D.Li, T.Cui, F.Tian. Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides. Phys. Chem. Chem. Phys., 21, 12029-12035(2019).

    [22] K.Xia, J.Sun, H.Gao, J.Yuan, C.Liu, X.Zheng, Q.Wu. Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts. J. Phys. Chem. C, 123, 10205-10211(2019).

    [23] Q.Wu, J.Sun, C.Liu, H.Gao, X.Zheng, K.Xia, J.Yuan. Predictions on high-power trivalent metal pentazolate salts. J. Phys. Chem. Lett., 10, 6166-6173(2019).

    [24] M.Zhang, S.Zhang, Y.Tian, D.Zhang, M.Lu, T.Bi, X.Xu, L.Gao, Y.Du, Y.Yan. Predicted crystal structures of titanium nitrides at high pressures. Comput. Mater. Sci., 180, 109720(2020).

    [25] B.Liu, Z.Yao, X.Shi. New high pressure phases of the Zn–N system. J. Phys. Chem. C, 124, 4044-4049(2020).

    [26] R.Larhlimi, F.Guégan, G.Frapper, B.Wang, H.Valencia. Prediction of novel tin nitride SnxNy phases under pressure. J. Phys. Chem. C, 124, 8080-8093(2020).

    [27] H.Zhang, C.Niu, J.Zhang, Z.Zeng, J.Zhao, X.Wang. Polymerization of nitrogen in nitrogen–fluorine compounds under pressure. J. Phys. Chem. Lett., 12, 5731-5737(2021).

    [28] J.Wu, K.Xia, J.Yuan, J.Sun. High-energy-density pentazolate salts: CaN10 and BaN10. Sci. China: Phys., Mech. Astron., 64, 218211(2021).

    [29] A. R.Oganov, B.Huang, G.Frapper, L.Zhang, Q.Zeng, S.Yu. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–mitrogen MgxNy under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).

    [30] L.Liu, S.Zhang, Z.Zhao, G.Yang. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources, 365, 155-161(2017).

    [31] Y.Yao, P.Chen, R.Tian, N.Gong, F.Gao, H.Liu, T.Shen, B.Wan, L.Wu, H.Gou. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).

    [32] Z.Yao, B.Liu, B.-B.Liu, X.-H.Shi. Pressure-stabilized new phase of CaN4. Chin. Phys. Lett., 37, 047101(2020).

    [33] H.Li, Z.Li, S.Niu, Z.Yao, B.Liu, X.Shi. New cadmium–nitrogen compounds at high pressures. Inorg. Chem., 60, 6772-6781(2021).

    [34] E.Koemets, K.Glazyrin, V.Prakapenka, M.Mezouar, C.McCammon, E.Bykova, F.Tasnádi, H. P.Liermann, N.Dubrovinskaia, G.Aprilis, M.Bykov, L.Dubrovinsky, A. V.Ponomareva, I.Kupenko, I.Chuvashova, I. A.Abrikosov. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun., 9, 2756(2018).

    [35] L.Dubrovinsky, D.Laniel, B.Winkler, M.Bykov, E.Koemets, N.Dubrovinskaia, E.Bykova, T.Fedotenko. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).

    [36] F.Tasnádi, A. N.Rudenko, I.Hotz, K.Glazyrin, M. F.Mahmood, J. S.Smith, M.Bykov, N.Dubrovinskaia, M.Hanfland, A. I.Abrikosov, T.Bin Masood, D.Laniel, V. B.Prakapenka, A. F.Goncharov, M. I.Katsnelson, T.Fedotenko, A. V.Ponomareva, I. A.Abrikosov, L.Dubrovinsky, S.Chariton. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).

    [37] V. B.Prakapenka, A. V.Ponomareva, S.Chariton, A. F.Goncharov, I. A.Abrikosov, E.Bykova, M. F.Mahmood, M.Bykov, L.Dubrovinsky. Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure. Angew. Chem., Int. Ed., 60, 9003-9008(2021).

    [38] F.Tasnádi, I. A.Abrikosov, K.Glazyrin, M.Bykov, G.Aprilis, H.-P.Liermann, E.Koemets, A. V.Ponomareva, N.Dubrovinskaia, L.Dubrovinsky, J.Tidholm, T.Fedotenko, E.Bykova. High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains. Angew. Chem., Int. Ed., 57, 9048-9053(2018).

    [39] A. V.Ponomareva, L.Dubrovinsky, M.Hanfland, S.Chariton, A. F.Goncharov, I. A.Abrikosov, P.Sedmak, M.Mahmood, M.Bykov, S.Khandarkhaeva, N.Dubrovinskaia, H. P.Liermann, J.Tidholm, E.Bykova, F.Tasnádi, T.Fedotenko, V.Prakapenka. High-pressure synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers. Angew. Chem., Int. Ed., 59, 10321-10326(2020).

    [40] J.Yuan, H.Gao, H.-T.Wang, C.Liu, J.Sun, D.Xing, K.Xia. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search. Sci. Bull., 63, 817-824(2018).

    [41] Y.Han, J.Sun, J.Wang, H.Gao. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. Fundam. Res., 1, 466-471(2021).

    [42] Z.Guo, J.Wang, H.Gao, J.Sun. Determining dimensionalities and multiplicities of crystal nets. npj Comput. Mater., 6, 143(2020).

    [43] J.Sun, C. J.Pickard, C.Liu, H.Gao, R. J.Needs, Y.Wang, H.-T.Wang, D.Xing. Multiple superionic states in helium–water compounds. Nat. Phys., 15, 1065-1070(2019).

    [44] J.Sun, Q.Gu, D.Xing. Superconducting single-layer T-graphene and novel synthesis routes. Chin. Phys. Lett., 36, 097401(2019).

    [45] M.Miao, H.-T.Wang, D.Xing, Y.Wang, A.Hermann, J.Sun, C. J.Pickard, C.Liu, R. J.Needs, H.Gao. Plastic and superionic helium ammonia compounds under high pressure and high temperature. Phys. Rev. X, 10, 021007(2020).

    [46] A.Hermann, R. J.Needs, J.Sun, H.-T.Wang, C. J.Pickard, D.Xing, H.Gao, C.Liu. Coexistence of plastic and partially diffusive phases in a helium-methane compound. Natl. Sci. Rev., 7, 1540-1547(2020).

    [47] J.Shi, H.Gao, C.Liu, J.Wang, Y.Han, J.Sun, D.Xing, X.Lu, H. T.Wang. Mixed coordination silica at megabar pressure. Phys. Rev. Lett., 126, 035701(2021).

    [48] J.Yuan, J.Sun, J.Wang, C.Ding, H.Gao, Y.Han. High energy density polymeric nitrogen nanotubes inside carbon nanotubes. Chin. Phys. Lett., 39, 036101(2022).

    [49] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [50] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).

    [51] X.Zhou, G. I.Csonka, K.Burke, A.Ruzsinszky, G. E.Scuseria, O. A.Vydrov, J. P.Perdew, L. A.Constantin. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406(2008).

    [52] G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).

    [53] H.Krieg, S.Ehrlich, J.Antony, S.Grimme. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104(2010).

    [54] L.Goerigk, S.Ehrlich, S.Grimme. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456-1465(2011).

    [55] I.Tanaka, A.Togo. First principles phonon calculations in materials science. Scr. Mater., 108, 1-5(2015).

    [56] A. L.Tchougréeff, V. L.Deringer, R.Dronskowski, S.Maintz. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem., 34, 2557-2567(2013).

    [57] V. L.Deringer, S.Maintz, A. L.Tchougréeff, R.Dronskowski. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 37, 1030-1035(2016).

    [58] A.Otero-de-la-Roza, V.Lua?a, A. M.Pendás, M. A.Blanco. Critic: A new program for the topological analysis of solid-state electron densities. Comput. Phys. Commun., 180, 157-166(2009).

    [59] E. R.Johnson, A.Otero-de-la-Roza, V.Lua?a. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun., 185, 1007-1018(2014).

    [60] K.Momma, F.Izumi. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44, 1272-1276(2011).

    [61] Y.Jean, J. K.Burdett, F.Volatron. An Introduction to Molecular Orbitals(1993).

    [62] S.Limpijumnong, W. R. L.Lambrecht. Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN. Phys. Rev. Lett., 86, 91-94(2001).

    [63] F.Ali Sahraoui, N.Bouarissa, S.Zerroug. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A, 97, 345-350(2009).

    [64] K.Bao, D.Duan, D.Li, S.Wei, T.Cui, F.Tian, Z.Liu, H.Yu, B.Liu, W.Wang. Bonding properties of aluminum nitride at high pressure. Inorg. Chem., 56, 7494-7500(2017).

    [65] R. J.Needs, C. J.Pickard. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702(2009).

    [66] I. C.Tranca, R. Y.Rohling, E. J. M.Hensen, E. A.Pidko. Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis. J. Phys. Chem. C, 123, 2843-2854(2019).

    [67] J.Contreras-García, S.Keinan, W.Yang, E. R.Johnson, P.Mori-Sánchez, A. J.Cohen. Revealing noncovalent interactions. J. Am. Chem. Soc., 132, 6498-6506(2010).

    [68] K.Schulten, A.Dalke, W.Humphrey. VMD: Visual molecular dynamics. J. Mol. Graphics, 14, 33-38(1996).

    [69] S. J.Jacobs, M. J.Kamlet. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys., 48, 23-35(1968).

    [70] J.Zhang, A. R.Oganov, X.Li, H.Niu. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(2017).

    Jianan Yuan, Kang Xia, Chi Ding, Xiaomeng Wang, Qing Lu, Jian Sun. High-energy-density metal nitrides with armchair chains[J]. Matter and Radiation at Extremes, 2022, 7(3): 038402
    Download Citation