• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1733001 (2022)
Wei Song1, Xiaochen Liu1、*, Dongmei Huang1、2、**, Kelin Sun3, and Bing Zhang3
Author Affiliations
  • 1College of Information, Shanghai Ocean University, Shanghai 201306, China
  • 2Shanghai University of Electric Power, Shanghai 201306, China
  • 3Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, Hainan , China
  • show less
    DOI: 10.3788/LOP202259.1733001 Cite this Article Set citation alerts
    Wei Song, Xiaochen Liu, Dongmei Huang, Kelin Sun, Bing Zhang. Construction of Video Quality Assessment Dataset for Deep-Sea Exploration[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1733001 Copy Citation Text show less
    References

    [1] Quan X Q, Chen X Z, Quan Y Q et al. Analysis and research progress of deep-sea optical illumination and imaging system[J]. Chinese Optics, 11, 153-165(2018).

    [2] Madhusudana P C, Yu X X, Birkbeck N et al. Subjective and objective quality assessment of high frame rate videos[J]. IEEE Access, 9, 108069-108082(2021).

    [3] Ghadiyaram D, Pan J, Bovik A C. A subjective and objective study of stalling events in mobile streaming videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 29, 183-197(2019).

    [4] Hosu V, Hahn F, Jenadeleh M et al. The Konstanz natural video database (KoNViD-1k)[C], 17010996(2017).

    [5] Deng X Y, Wang H G, Zhang Y Q. Deep sea image enhancement method based on the active illumination[J]. Acta Photonica Sinica, 49, 0310001(2020).

    [6] Song W, Liu S M, Huang D M et al. Non-reference underwater video quality assessment method for small size samples[J]. Journal of Image and Graphics, 25, 1787-1799(2020).

    [7] Ma K D, Duanmu Z F, Wu Q B et al. Waterloo exploration database: new challenges for image quality assessment models[J]. IEEE Transactions on Image Processing, 26, 1004-1016(2017).

    [8] Moreno-Roldán J M, Luque-Nieto M Á, Poncela J et al. Subjective quality assessment of underwater video for scientific applications[J]. Sensors, 15, 31723-31737(2015).

    [9] Moreno-Roldán J M, Poncela J, Otero P et al. A no-reference video quality assessment model for underwater networks[J]. IEEE Journal of Oceanic Engineering, 45, 342-346(2020).

    [10] Islam M J, Xia Y Y, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 5, 3227-3234(2020).

    [11] Islam M J, Luo P G, Sattar J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception[C].

    [12] Li C, Guo C, Ren W et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 29, 4376-4389(2019).

    [13] Reynolds J H, Chelazzi L. Attentional modulation of visual processing[J]. Annual Review of Neuroscience, 27, 611-647(2004).

    [14] Dai C G, Lin M X, Wang Z et al. Color compensation based on bright channel and fusion for underwater image enhancement[J]. Acta Optica Sinica, 38, 1110003(2018).

    [15] Qian L J, Jin H H, Fan Z G et al. Underwater image restoration method suppressing interference of light source in field of view[J]. Acta Optica Sinica, 41, 1801001(2021).

    [16] Song W, Xing J J, Du Y L et al. Underwater image enhancement based on generative adversarial network with preprocessed image penalty[J]. Laser & Optoelectronics Progress, 58, 1210024(2021).

    [17] Ancuti C, Ancuti C O, Haber T et al. Enhancing underwater images and videos by fusion[C], 81-88(2012).

    [18] Li C Y, Anwar S, Hou J H et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 30, 4985-5000(2021).

    [19] Jian M Z, Li D, Zhang J Q. Underwater image restoration based on non-uniform incident light imaging model[J]. Acta Optica Sinica, 41, 1501003(2021).

    [20] Cheng M M, Mitra N J, Huang X L et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 569-582(2015).

    [21] ITU-T. Recommendation P. 913: Methods for the subjective assessment of video quality, audio quality and audiovisual quality of Internet video and distribution quality television in any environment[EB/OL]. https://www.itu.int/rec/T-REC-P.913-202106-I/en

    [22] Yang M, Sowmya A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 24, 6062-6071(2015).

    [23] Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 41, 541-551(2016).

    [24] Guo J C, Li C Y, Zhang Y et al. Quality assessment method for underwater images[J]. Journal of Image and Graphics, 22, 1-8(2017).

    [25] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 21, 4695-4708(2012).

    [26] Mittal A, Saad M A, Bovik A C. A completely blind video integrity oracle[J]. IEEE Transactions on Image Processing, 25, 289-300(2016).

    [27] Saad M A, Bovik A C, Charrier C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Processing, 23, 1352-1365(2014).

    Wei Song, Xiaochen Liu, Dongmei Huang, Kelin Sun, Bing Zhang. Construction of Video Quality Assessment Dataset for Deep-Sea Exploration[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1733001
    Download Citation