• Journal of Inorganic Materials
  • Vol. 36, Issue 11, 1231 (2021)
Tinghai MU1、2, Wentao XU2、3, Junrong LING2, Tianwen DONG2, Zixuan QIN2, and Youfu ZHOU2、3、*
Author Affiliations
  • 11. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
  • 22. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 33. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
  • show less
    DOI: 10.15541/jim20210150 Cite this Article
    Tinghai MU, Wentao XU, Junrong LING, Tianwen DONG, Zixuan QIN, Youfu ZHOU. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231 Copy Citation Text show less
    References

    [1] J LI, J PENG, S GUO et al. Thermodynamic calculations of t to m martenstic transformation of ZrO2-CaO binary system. Ceramics International, 38, 2743-2747(2012).

    [2] K LI, D WANG, H CHEN et al. Normalized evaluation of thermal shock resistance for ceramic materials. Journal of Advanced Ceramics, 3, 250-258(2014).

    [3] M YOSHINAGA, T SASAKI, N KOBAYASHI. Effect of microwave irradiation for crystallization behavior of yttria-stabilized zirconia system. Journal of the Ceramic Society of Japan, 127, 767-772(2019).

    [4] I MALYI O, P WU, V KULISH V et al. Formation and migration of oxygen and zirconium vacancies in cubic zirconia and zirconium oxysulfide. Solid State Ionics, 212, 117-122(2012).

    [5] L WANG, T LIANG. Ceramics for high level radioactive waste solidification. Journal of Advanced Ceramics, 1, 194-203(2012).

    [6] B LI, YANG, M CHU et al. Ti3SiC2/UO2 composite pellets with superior high-temperature thermal conductivity. Ceramics International, 44, 19846-19850(2018).

    [7] S HOLGATE C, G G E SEWARD, A R ERICKS et al. Dissolution and diffusion kinetics of yttria-stabilized zirconia into molten silicates. Journal of the European Ceramic Society, 41, 1984-1994(2021).

    [8] G MEBRAHITOM ASMELASH, O MAMAT, F AHMAD et al. Thermal shock and fatigue behavior of pressureless sintered Al2O3- SiO2-ZrO2 composites. Journal of Advanced Ceramics, 4, 190-198(2015).

    [9] F DONG K, Q MO W, F JIN et al. Effect of TiN-ZrO2 intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO2-C thin films. Journal of Magnetism and Magnetic Materials, 432, 323-329(2017).

    [10] Y JI, R FU, J LV et al. Enhanced bonding strength of Al2O3/AlN ceramics joined via glass frit with gradient thermal expansion coefficient. Ceramics International, 46, 12806-12811(2020).

    [11] A LAZAR, T KOSMAC, J ZAVASNIK et al. TiN-nanoparticulate- reinforced ZrO2 for electrical discharge machining. Materials (Basel), 12, 2788-2802(2019).

    [12] A ESMAEILZAEI, A SAJJADI S, S MOLLAZADEH BEIDOKHTI et al. Rapid consolidation of Al2O3-TiO2-Co nanocermets via spark plasma sintering of Co-coated ceramic particles. Journal of Alloys and Compounds, 771, 79-88(2019).

    [13] H OKAZAKI, R KOBAYASHI, R HASHIMOTO et al. Thermal conductivity and mechanical strength of low-temperature-sintered aluminum nitride ceramics containing aluminum nitride whiskers. Journal of the Ceramic Society of Japan, 128, 991-994(2020).

    [14] CT YEH, H TUAN W. Oxidation mechanism of aluminum nitride revisited. Journal of Advanced Ceramics, 6, 27-32(2017).

    [15] H MIYAZAKI, YI YOSHIZAWA. Correlation of the indentation fracture resistance measured using high-resolution optics and the fracture toughness obtained by the single edge-notched beam (SEPB) method for typical structural ceramics with various microstructures. Ceramics International, 42, 7873-7876(2016).

    [16] I TANAKA. Impacts of first principles calculations in engineering ceramics. Journal of the Ceramic Society of Japan, 124, 791-795(2016).

    [17] Y LU, Z YUAN, H SHEN et al. High-temperature phase relations of ZrN-ZrO2-Y2O3 ternary system. Journal of Advanced Ceramics, 7, 388-391(2018).

    [18] J CALLAWAY. Model for lattice thermal conductivity at low temperatures. Physical Review, 113, 1046-1051(1959).

    [19] Y TAO, C LIU, W CHEN et al. Mean free path dependent phonon contributions to interfacial thermal conductance. Physics Letters A, 381, 1899-1904(2017).

    [20] A SLACK G. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids, 34, 321-335(1972).

    [21] H HONG, J KIM, I KIM T. Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite. Polymers, 9, 413(2017).

    [22] H CHEN, J WEI, Y CHEN et al. Theoretical investigation of the mechanical and thermodynamic properties of titanium pernitride under high temperature and high pressure. Journal of Alloys and Compounds, 726, 1179-1185(2017).

    [23] V NOVIKOV V. Debye-Einstein model and anomalies of heat capacity temperature dependences of solid solutions at low temperatures. Journal of Thermal Analysis and Calorimetry, 138, 265-272(2019).

    Tinghai MU, Wentao XU, Junrong LING, Tianwen DONG, Zixuan QIN, Youfu ZHOU. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231
    Download Citation