• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207011 (2018)
Li Pei, Yang Shanshan, Ding Zhihua, and Li Peng*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207011 Cite this Article Set citation alerts
    Li Pei, Yang Shanshan, Ding Zhihua, Li Peng. Research Progress in Fourier Domain Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207011 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P. et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher A F, Drexler W, Hitzenberger C K. et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003). http://rheumatology.oxfordjournals.org/external-ref?access_num=10.1088/0034-4885/66/2/204&link_type=DOI

    [3] Grulkowski I, Gora M, Szkulmowski M. et al. Anterior segment imaging with spectral OCT system using a high-speed CMOS camera[J]. Optics Express, 17, 4842-4858(2009). http://www.ncbi.nlm.nih.gov/pubmed/19293916

    [4] An L, Li P, Shen T T. et al. High speed spectral domain optical coherence tomography for retinal imaging at 500000 A-lines per second[J]. Biomedical Optics Express, 2, 2770-2783(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3191444/

    [5] Klein T, Wieser W, Reznicek L. et al. Multi-MHz retinal OCT[J]. Biomedical Optics Express, 4, 1890-1908(2013).

    [6] Li P, An L, Lan G. et al. Extended imaging depth to 12 mm for 1050 nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120 kHz A-scan rate[J]. Journal of Biomedical Optics, 18, 016012(2013). http://europepmc.org/articles/PMC3548517/

    [7] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 13, 5234-5239(2005). http://www.ncbi.nlm.nih.gov/pubmed/19498514

    [8] Mariampillai A, Standish B A, Moriyama E H. et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008). http://www.europepmc.org/abstract/MED/18594688

    [9] Jia Y, Tan O, Tokayer J. et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012). http://europepmc.org/articles/PMC3381646/

    [10] Makita S, Hong Y, Yamanari M. et al. Optical coherence angiography[J]. Optics Express, 14, 7821-7840(2006).

    [11] Wang R K, Jacques S L, Ma Z H. et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [12] Fingler J, Zawadzki R J, Werner J S. et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 17, 22190-22200(2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190

    [13] Yu L F, Chen Z P. Doppler variance imaging for three-dimensional retina and choroid angiography[J]. Journal of Biomedical Optics, 15, 016029(2010). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JBOPFO000015000001016029000001&idtype=cvips&gifs=Yes

    [14] Zhou L P, Li P, Pan C et al. System of label-free three-dimensional optical coherence tomography angiography with high sensitivity and motion contrast and its applications in brain science[J]. Acta Physica Sinica, 65, 154201(2016).

    [15] Li P, Cheng Y X, Zhou L P. et al. Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement[J]. Optics Letters, 41, 1058-1061(2016). http://www.ncbi.nlm.nih.gov/pubmed/26974115

    [16] Li P, Cheng Y X, Li P. et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 41, 3944-3947(2016). http://europepmc.org/abstract/MED/27607943

    [17] Guo L, Li P, Pan C. et al. Improved motion contrast and processing efficiency in OCT angiography using complex-correlation algorithm[J]. Journal of Optics, 18, 025301(2016). http://www.ingentaconnect.com/content/iop/jopt2/2016/00000018/00000002/art025301

    [18] Guo L, Shi R, Zhang C. et al. Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously[J]. Journal of Biomedical Optics, 21, 081202(2016). http://www.ncbi.nlm.nih.gov/pubmed/26950927

    [19] Cheng Y X, Guo L, Pan C. et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 20, 116004(2015). http://europepmc.org/abstract/MED/26524681

    [20] Li P, Johnstone M, Wang R K. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm[J]. Journal of Biomedical Optics, 19, 046013(2014). http://www.ncbi.nlm.nih.gov/pubmed/24752381

    [21] An L, Wang R K. Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography[J]. Optics Letters, 32, 3423-3425(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827990

    [22] Li P, Zhou L P, Ni Y. et al. Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction[J]. Journal of Biomedical Optics, 21, 086014(2016). http://www.ncbi.nlm.nih.gov/pubmed/27557343

    [23] Yasuno Y, Endo T, Makita S. et al. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation[J]. Journal of Biomedical Optics, 11, 014014(2006). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ023712120

    [24] Wang K, Ding Z H, Zeng Y. et al. Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact[J]. Optics Express, 17, 16820-16833(2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-19-16820

    [25] Dhalla A H, Izatt J A. Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line[J]. Biomedical Optics Express, 2, 1218-1232(2011). http://www.ncbi.nlm.nih.gov/pubmed/22435107

    [26] Maheshwari A, Choma M A, Izatt J A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal[J]. Journal of Biomedical Optics, 10, 064005(2005). http://www.ncbi.nlm.nih.gov/pubmed/16409070

    [27] Li P, An L, Reif R. et al. In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography[J]. Biomedical Optics Express, 2, 3109-3118(2011). http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3207379/

    [28] Li P, Ding Z, Ni Y. et al. Visualization of the ocular pulse in the anterior chamber of the mouse eye in vivo using phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 19, 090502(2014). http://www.ncbi.nlm.nih.gov/pubmed/25202897

    [29] Li P, Shen T, Johnstone M. et al. Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography[J]. Biomedical Optics Express, 4, 2051-2065(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3799665/

    [30] Li P, Reif R, Zhi Z W. et al. Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes[J]. Journal of Biomedical Optics, 17, 076026(2012). http://europepmc.org/abstract/MED/22894509

    [31] Grulkowski I, Liu J J, Potsaid B. et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Optics Letters, 38, 673-675(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3836603/

    [32] Potsaid B, Gorczynska I, Srinivasan V J et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second[J]. Optics Express, 16, 15149-15169(2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-15149

    [33] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    [34] Lee H Y, Marvdashti T, Duan L et al. Scalable multiplexing for parallel imaging with interleaved optical coherence tomography[J]. Biomedical Optics Express, 5, 3192(2014). http://europepmc.org/abstract/med/25401031

    [35] Zhao Y H, Chen Z P, Saxer C. et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 25, 114-116(2000). http://www.opticsinfobase.org/abstract.cfm?id=291

    [36] Li P, Ding Z H, Ni Y. et al. Visualization of the ocular pulse in the anterior chamber of the mouse eye in vivo using phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 19, 090502(2014). http://www.ncbi.nlm.nih.gov/pubmed/25202897

    [37] Faber D J, Mik E G. Aalders M C G, et al. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography[J]. Optics Letters, 28, 1436-1438(2003). http://europepmc.org/abstract/MED/12943083

    [38] Kuranov R V, Qiu J Z. McElroy A B, et al. Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography[J]. Biomedical Optics Express, 2, 491-504(2011). http://pubmedcentralcanada.ca/articlerender.cgi?accid=PMC3047355

    [39] Yasuno Y, Yamanari M, Kawana K. et al. Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 15, 061705(2010). http://europepmc.org/abstract/med/21198153

    [40] Cense B, Chen T C, Park B H. et al. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 45, 2606-2612(2004). http://europepmc.org/abstract/MED/15277483

    [41] O'Hara K E. Schmoll T, Vass C, et al. Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 18, 121506(2013). http://www.ncbi.nlm.nih.gov/pubmed/24194123

    [42] Park B H, Pierce M C, Cense B. et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-11-3931

    [43] Li P, Liu A P, Shi L. et al. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography[J]. Physics in Medicine & Biology, 56, 7081-7092(2011). http://europepmc.org/articles/PMC3296455/

    [44] Wang R K, Kirkpatrick S, Hinds M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time[J]. Applied Physics Letters, 90, 164105(2007). http://scitation.aip.org/content/aip/journal/apl/90/16/10.1063/1.2724920

    [45] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 307, 58-62(2005). http://www.ncbi.nlm.nih.gov/pubmed/15637262

    [46] Vakoc B J, Lanning R M, Tyrrell J A. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 15, 1219-1223(2009). http://pubmedcentralcanada.ca/pmcc/articles/PMC2759417/

    [47] Flammer J, Orgül S, Costa V P. et al. The impact of ocular blood flow in glaucoma[J]. Progress in Retinal and Eye Research, 21, 359-393(2002). http://www.ncbi.nlm.nih.gov/pubmed/12150988

    [48] Malpass K. Stroke: retinal changes predict subsequent vascular events in ischemic stroke[J]. Nature Reviews Neurology, 7, 538(2011). http://www.nature.com/nrneurol/journal/v7/n10/full/nrneurol.2011.148.html

    [49] Drexler W, Fujimoto J G. State-of-the-art retinal optical coherence tomography[J]. Progress in Retinal and Eye Research, 27, 45-88(2008). http://www.ncbi.nlm.nih.gov/pubmed/18036865

    [50] Jia Y L, Li P, Dziennis S. et al. Responses of Peripheral Blood Flow to Acute Hypoxia and Hyperoxia as Measured by Optical Microangiography[J]. PLoS One, 6, e26802(2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201975/?report=classic

    Li Pei, Yang Shanshan, Ding Zhihua, Li Peng. Research Progress in Fourier Domain Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207011
    Download Citation