• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207011 (2018)
Li Pei, Yang Shanshan, Ding Zhihua, and Li Peng*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207011 Cite this Article Set citation alerts
    Li Pei, Yang Shanshan, Ding Zhihua, Li Peng. Research Progress in Fourier Domain Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207011 Copy Citation Text show less
    Michelson interferometer and optical low coherence interference. (a) Michelson interferometer; (b) cosine function simple harmonic oscillation of interference signal; (c)(d) interferometric fringe; (e) short coherence length light
    Fig. 1. Michelson interferometer and optical low coherence interference. (a) Michelson interferometer; (b) cosine function simple harmonic oscillation of interference signal; (c)(d) interferometric fringe; (e) short coherence length light
    Reconstruction of 3D OCT image for mouse full eye in vivo
    Fig. 2. Reconstruction of 3D OCT image for mouse full eye in vivo
    Schematic of Fourier domain low coherence interference. (a) spectral domain detection; (b) swept source detection; (c) signal reconstruction from frequency domain to spatial domain
    Fig. 3. Schematic of Fourier domain low coherence interference. (a) spectral domain detection; (b) swept source detection; (c) signal reconstruction from frequency domain to spatial domain
    Lateral resolution of OCT with different numerical apertures
    Fig. 4. Lateral resolution of OCT with different numerical apertures
    Sensitivity falling-off versus depth
    Fig. 5. Sensitivity falling-off versus depth
    3D imaging of the whole anterior segment of the human eye. (a) 3D rendering of the full anterior segment (covering range of 12 mm×18 mm×18 mm); (b) typical cross-sectional image; (c) sub-regions of the corneo-scleral limbus, cornea, anterior and posterior parts of the crystalline lens
    Fig. 6. 3D imaging of the whole anterior segment of the human eye. (a) 3D rendering of the full anterior segment (covering range of 12 mm×18 mm×18 mm); (b) typical cross-sectional image; (c) sub-regions of the corneo-scleral limbus, cornea, anterior and posterior parts of the crystalline lens
    OCT images of chick embryonic heart. (a) Longitudinal section; (b) cross section; (c) M-mode structural image along the vertical dashed line in (b) which the boundary of myocardial wall is indicated by the solid curves; (d) M-mode structural image superimposed with radial strain rate of the myocardial wall and Doppler velocity of blood flow (The vertical scale bar is 200 μm, and the horizontal bar is 0.1 s)
    Fig. 7. OCT images of chick embryonic heart. (a) Longitudinal section; (b) cross section; (c) M-mode structural image along the vertical dashed line in (b) which the boundary of myocardial wall is indicated by the solid curves; (d) M-mode structural image superimposed with radial strain rate of the myocardial wall and Doppler velocity of blood flow (The vertical scale bar is 200 μm, and the horizontal bar is 0.1 s)
    3D label-free OCTA imaging of the rat cortex vasculature[15]
    Fig. 8. 3D label-free OCTA imaging of the rat cortex vasculature[15]
    Li Pei, Yang Shanshan, Ding Zhihua, Li Peng. Research Progress in Fourier Domain Optical Coherence Tomography[J]. Chinese Journal of Lasers, 2018, 45(2): 207011
    Download Citation