• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312005 (2023)
Rong Su1,*, Jiayu Liu1,2, Xiaoyue Qiao1,3, Zhenxiong Jian1,2..., Zheng Zhang1,4, Rongxian Wen1, Cheng Chen1, Mingjun Ren2 and Limin Zhu2|Show fewer author(s)
Author Affiliations
  • 1Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3China-Russia Belt and Road Joint Laboratory on Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/LOP223228 Cite this Article Set citation alerts
    Rong Su, Jiayu Liu, Xiaoyue Qiao, Zhenxiong Jian, Zheng Zhang, Rongxian Wen, Cheng Chen, Mingjun Ren, Limin Zhu. Advances in Scanning White Light Interferometry for Surface Topography Measurement[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312005 Copy Citation Text show less
    References

    [1] Schmit J, Creath K, Wyant J C. Surface profilers, multiple wavelength, and white light intereferometry[M]. Malacara D. Optical shop testing, 667-755(2007).

    [2] Damian V, Bojan M, Schiopu P et al. White light interferometry applications in nanometrology[J]. Proceedings of SPIE, 7297, 72971H(2009).

    [3] Hariharan P. White-light interference microscopy[M]. Hariharan P. Basics of interferometry(2010).

    [4] de Groot P. Coherence scanning interferometry[M]. Leach R K. Optical measurement of surface topography, 187-208(2011).

    [5] Bauer W, Weber M, Chanbai S. White light interferometry[M]. Wang Q J, Chung Y W. Encyclopedia of tribology, 4115-4127(2013).

    [6] de Groot P. Principles of interference microscopy for the measurement of surface topography[J]. Advances in Optics and Photonics, 7, 1-65(2015).

    [7] de Groot P. Interference microscopy for surface structure analysis[M]. Yoshizawa T. Handbook of optical metrology principles and applications, 791-828(2015).

    [8] de Groot P. A review of selected topics in interferometric optical metrology[J]. Reports on Progress in Physics, 82, 056101(2019).

    [9] Su R. Coherence scanning interferometry[M]. Leach R K. Advances in optical surface texture metrology, 2-1—2-27(2020).

    [10] Chinellato S, Pernechele C, Carmignato S et al. Surface measurements of radio antenna panels with white-light interferometry[J]. Proceedings of SPIE, 7739, 77392T(2010).

    [11] Laopornpichayanuwat W, Visessamit J, Tianprateep M. 3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode[J]. Measurement, 45, 2400-2406(2012).

    [12] Sachs R, Stanzel F. Interference microscopy for clean air-how optical metrology is improving quality control of fuel injection systems[C], 535-538(2013).

    [13] Mukhtar H, Montgomery P, Gianto et al. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results[J]. IOP Conference Series: Earth and Environmental Science, 8, 012028(2016).

    [14] Apedo K L, Montgomery P, Serres N et al. Geometrical roughness analysis of cement paste surfaces using coherence scanning interferometry and confocal microscopy[J]. Materials Characterization, 118, 212-224(2016).

    [15] Zou Y, Li Y, Kaestner M et al. Low-coherence interferometry based roughness measurement on turbine blade surfaces using wavelet analysis[J]. Optics and Lasers in Engineering, 82, 113-121(2016).

    [16] Sergeeva M, Khrenikov K, Hellmuth T et al. Sub surface damage measurements based on short coherent interferometry[J]. Journal of the European Optical Society-Rapid Publications, 5, 10003(2010).

    [17] Bae E, Kim Y, Park S et al. Large-aperture ground glass surface profile measurement using coherence scanning interferometry[J]. Optics Express, 25, 1106-1113(2017).

    [18] Yin Z, Guo R, Yang X et al. Measurement method for surface defects on ICF capsules based on white light interferometry[J]. Acta Optica Sinica, 42, 1012004(2022).

    [19] Fay M, Colonna de Lega X, de Groot P. Measuring high-slope and super-smooth optics with high-dynamic-range coherence scanning interferometry[C], OW1B-3(2014).

    [20] Mabwa D, Kubiena T, Parnell H et al. Evaluating the cytotoxicity of Ge-Sb-Se chalcogenide glass optical fibres on 3T3 mouse fibroblasts[J]. RSC Advances, 11, 8682-8693(2021).

    [21] Lazzini G, Romoli L, Blunt L et al. Design and characterization of textured surfaces for applications in the food industry[J]. Surface Topography: Metrology and Properties, 5, 044005(2017).

    [22] Speidel A, Su R, Mitchell-Smith J et al. Crystallographic texture can be rapidly determined by electrochemical surface analytics[J]. Acta Materialia, 159, 89-101(2018).

    [23] Bermudez C, Martinez P, Cadevall C et al. High-speed, roll to roll coherence scanning interferometry in a laser texturing process[C], 176-177(2019).

    [24] Sun Y F, Gao Z S, Ma J Q et al. Surface topography measurement of microstructures near the lateral resolution limit via coherence scanning interferometry[J]. Optics and Lasers in Engineering, 152, 106949(2022).

    [25] Xin L, Liu X, Yang Z M et al. Three-dimensional reconstruction of super-resolved white-light interferograms based on deep learning[J]. Optics and Lasers in Engineering, 145, 106663(2021).

    [26] Fay M F, Colonna de Lega X, Schmidt M. Measuring high-slope parts using coherence scanning interferometry[C], 604-608(2014).

    [27] Matthew T, Su R, de Groot P et al. Optical topography measurement of steeply-sloped surfaces beyond the specular numerical aperture limit[J]. Proceedings of SPIE, 11352, 1135207(2020).

    [28] Townsend A, Senin N, Blunt L et al. Surface texture metrology for metal additive manufacturing: a review[J]. Precision Engineering, 46, 34-47(2016).

    [29] Leach R K, Bourell D, Carmignato S et al. Geometrical metrology for metal additive manufacturing[J]. CIRP Annals-Manufacturing Technology, 68, 677-700(2019).

    [30] Senin N, Thompson A, Leach R K. Characterisation of the topography of metal additive surface features with different measurement technologies[J]. Measurement Science and Technology, 28, 095003(2017).

    [31] Fay M, Badami V G, de Lega X. Characterizing additive manufacturing parts using coherence scanning interferometry[C], 135-138(2014).

    [32] Gomez C, Su R, Thompson A et al. Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry[J]. Optical Engineering, 56, 111714(2017).

    [33] Gomez C, Campanelli C, Su R et al. Surface-process correlation for an ink-jet printed transparent fluoroplastic[J]. Surface Topography: Metrology and Properties, 8, 034002(2020).

    [34] Guo T, Wang R J, Ma L et al. Geometric parameter measurement of thick films by white light scanning interferometry[J]. Journal of Optoelectronics·Laser, 22, 1380-1383(2011).

    [35] Chang S P, Xie T B, Sun Y L. Measurement of transparent film using vertical scanning white-light interferometry[C], 1063-1067.

    [36] Liu S J, Zhang Y L, Zhang H C. Profile measurement of thin transparentsoft film surface[J]. Chinese Optics, 7, 326-331(2014).

    [37] Pecheva E, Montgomery P, Montaner D et al. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers[J]. Langmuir: the ACS journal of surfaces and colloids, 23, 3912-3918(2007).

    [38] Xue H, Shen W D, Gu P F et al. Thickness measurement of thin film based on white-light spectral interferometry[J]. Acta Optica Sinica, 29, 1877-1880(2009).

    [39] Yoshino H, Abbas A, Kaminski P et al. Measurement of thin film interfacial surface roughness by coherence scanning interferometry[J]. Journal of Applied Physics, 121, 105303-105310(2017).

    [40] Yang Y, Mansfield D. Characterisation of thin films using a coherence scanning interferometry[J]. Journal of Materials Science and Chemical Engineering, 3, 15(2015).

    [41] Maniscalco B, Kaminski P M, Walls J M. Thin film thickness measurements using scanning white light interferometry[J]. Thin Solid Films, 550, 10-16(2014).

    [42] de Groot P, Colonna de Lega X, Fay M. Transparent film profiling and analysis by interference microscopy[J]. Proceedings of SPIE, 7064, 706401(2008).

    [43] Zhen C, YAO X R, Shi Y et al. Internal structure, surface morphology and optical property of semicrystalline polymer films[J]. Chemical Propellants and Polymeric Materials, 34, 7(2018).

    [44] Feng X B, Senin N, Su R et al. Optical measurement of surface topographies with transparent coatings[J]. Optics and Lasers in Engineering, 121, 261-270(2019).

    [45] de Groot P, Colonna de Lega X. Angle-resolved three-dimensional analysis of surface films by coherence scanning interferometry[J]. Optics Letters, 32, 1638-1640(2007).

    [46] Fay M, Dresel T. Applications of model-based transparent surface films analysis using coherence-scanning interferometry[J]. Optical Engineering, 56, 111709-1-111709-6(2017).

    [47] Mansfield D. Extraction of film interface surfaces from scanning white light interferometry[J]. Proceedings of SPIE, 7101, 71010U(2008).

    [48] Yoshino H, Kaminski P M, Smith R et al. Refractive index determination by coherence scanning interferometry[J]. Applied Optics, 55, 4253-4260(2016).

    [49] Claveau R, Montgomery P, Flury M et al. Local reflectance spectra measurements of surfaces using coherence scanning interferometry[J]. Proceedings of SPIE, 9890, 98900Q(2016).

    [50] Marbach S, Claveau R, Wang F T et al. Wide-field parallel mapping of local spectral and topographic information with white light interference microscopy[J]. Optics Letters, 46, 809-812(2021).

    [51] Watanabe K, Ohshima M, Nomura T. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning[J]. Journal of Optics, 16, 045403(2014).

    [52] Nakano K, Hane K, Okuma S et al. Visualization of 50 MHz surface acoustic wave propagation using stroboscopic phase-shift interferometry[J]. Optical Review, 4, 265-269(1997).

    [53] de Groot P. Stroboscopic white-light interference microscopy[J]. Applied Optics, 45, 5840-5844(2006).

    [54] Hanhijarvi K, Kassamakov I, Aaltonen J et al. Through-silicon stroboscopic characterization of an oscillating mems thermal actuator using supercontinuum interferometry[J]. IEEE/ASME Transactions on Mechatronics, 18, 1418-1420(2013).

    [55] Heikkinen V, Kassamakov I, Paulin T et al. Stroboscopic scanning white light interferometry at 2.7 MHz with 1.6 μm coherence length using a non-phosphor LED source[J]. Optics Express, 21, 5247-5254(2013).

    [56] Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry[J]. Journal of the Optical Society of America A, 13, 832-843(1996).

    [57] Sandoz P. Wavelet transform as a processing tool in white-light interferometry[J]. Optics Letters, 22, 1065-1067(1997).

    [58] de Groot P, Deck L. Surface profiling by analysis of white-light interferograms in the spatial frequency domain[J]. Journal of Modern Optics, 42, 389-401(1995).

    [59] de Groot P, Colonna de Lega X, Kramer J et al. Determination of fringe order in white-light interference microscopy[J]. Applied Optics, 41, 4571-4578(2002).

    [60] Kino G S, Chim S S C. Mirau correlation microscope[J]. Applied Optics, 29, 3775-3783(1990).

    [61] Harasaki A, Schmit J, Wyant J C. Improved vertical-scanning interferometry[J]. Applied Optics, 39, 2107-2115(2000).

    [62] Pavlicek P, Michalek V. White-light interferometry-envelope detection by Hilbert transform and influence of noise[J]. Optics and Lasers in Engineering, 50, 1063-1068(2012).

    [63] Montgomery P, Salzenstein F, Montaner D et al. Implementation of a fringe visibility based algorithm in coherence scanning interferometry for surface roughness measurement[J]. Proceedings of SPIE, 8788, 87883G(2013).

    [64] Gianto G, Salzenstein F, Montgomery P. Comparison of envelope detection techniques in coherence scanning interferometry[J]. Applied Optics, 55, 6763-6774(2016).

    [65] Hissmann M, Hamprecht F A. Bayesian surface estimation for white light interferometry[J]. Optical Engineering, 44, 015601(2005).

    [66] Guo T, Ma L, Chen J P et al. Microelectromechanical systems surface characterization based on white light phase shifting interferometry[J]. Optical Engineering, 50, 053606(2011).

    [67] Ghim Y S, Davies A. Complete fringe order determination in scanning white-light interferometry using a Fourier-based technique[J]. Applied Optics, 51, 1922-1928(2012).

    [68] Ma S, Quan C, Zhu R et al. Application of least-square estimation in white-light scanning interferometry[J]. Optics and Lasers in Engineering, 49, 1012-1018(2011).

    [69] Vo Q, Fang F, Zhang X et al. Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms[J]. Applied Optics, 56, 8174-8185(2017).

    [70] Huang Y, Gao J, Zhang L et al. Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement[J]. Applied Optics, 59, 1082-1091(2020).

    [71] Wu D, Fang F. Development of surface reconstruction algorithms for optical interferometric measurement[J]. Frontiers of Mechanical Engineering, 16, 1-31(2021).

    [72] Gomez C, Su R, de Groot P et al. Noise reduction in coherence scanning interferometry for surface topography measurement[J]. Nanomanufacturing and Metrology, 3, 68-76(2020).

    [73] Wiesner B, Hybl O, Hausler G. Improved white-light interferometry on rough surfaces by statistically independent speckle patterns[J]. Applied Optics, 51, 751-757(2012).

    [74] de Groot P, Colonna de Lega X, Liesener J et al. Metrology of optically-unresolved features using interferometric surface profiling and RCWA modeling[J]. Optics Express, 16, 3970-3975(2008).

    [75] Olszak A. Lateral scanning white-light interferometer[J]. Applied Optics, 39, 3906-3913(2000).

    [76] Chen L C, Le M T, Lin Y S. 3-D micro surface profilometry employing novel Mirau-based lateral scanning interferometry[J]. Measurement Science and Technology, 25, 094004(2014).

    [77] Yang W, Liu X, Hu C et al. Rapid characterization of nano-scale structures in large-scale ultra-precision surfaces[J]. Optics and Lasers in Engineering, 134, 106200(2020).

    [78] Wang J, Su R, Leach R K et al. Resolution enhancement for topography measurement of high-dynamic-range surfaces via image fusion[J]. Optics Express, 26, 34805-34819(2018).

    [79] Leach R K, Sims-Waterhouse D, Medeossi F et al. Fusion of photogrammetry and coherence scanning interferometry data for all-optical coordinate measurement[J]. CIRP Annals-Manufacturing Technology, 67, 599-602(2018).

    [80] Montgomery P, Lecler S, Leong-Hoi A et al. High Resolution Surface Metrology Using Microsphere-Assisted Interference Microscopy[J]. Physica Status Solidi A, 216, 1800761(2019).

    [81] Perrin S, Lecler S, Montgomery P. Microsphere-assisted interference microscopy[M]. Astratov V. Label-free super-resolution microscopy, 443-469(2019).

    [82] Perrin S, Leong-Hoi A, Lecler S et al. Microsphere-assisted phase-shifting profilometry[J]. Applied Optics, 56, 7249-7255(2017).

    [83] Pahl T, Hüser L, Hagemeier S et al. FEM-based modeling of microsphere-enhanced interferometry[J]. Light: Advanced Manufacturing, 3, 1-13(2022).

    [84] Colonna de Lega X, de Groot P. Characterization of materials and film stacks for accurate surface topography measurement using a white-light optical profiler[J]. Proceedings of SPIE, 6995, 69950P(2008).

    [85] Paz V F, Peterhänsel S, Frenner K et al. Solving the inverse grating problem by white light interference Fourier scatterometry[J]. Light: Science & Applications, 1, e36(2012).

    [86] Gödecke M L, Frenner K, Osten W. Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry[J]. Light: Advanced Manufacturing, 2, 237-50(2021).

    [87] Niehues J, Lehmann P, Bobey K. Dual-wavelength vertical scanning low-coherence interferometric microscope[J]. Applied Optics, 46, 7141-7148(2007).

    [88] Oh J S, Kim S-W. Femtosecond laser pulses for surface-profile metrology[J]. Optics Letters, 30, 2650-2652(2005).

    [89] Joo W-D, Kim S, Park J et al. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures[J]. Optics Express, 21, 15323(2013).

    [90] Lu Y, Park J, Yu L et al. 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser[J]. Applied Optics, 57, 2584-2589(2018).

    [91] Kassamakov I, Hanhijärvi K, Abbadi I et al. Scanning white-light interferometry with a supercontinuum source[J]. Optics Letters, 34, 1582-1584(2009).

    [92] Roy M, Svahn P, Cherel L et al. Geometric phase-shifting for low-coherence interference microscopy[J]. Optics and Lasers in Engineering, 37, 631-641(2002).

    [93] Roy M, Schmit J, Hariharan P. White-light interference microscopy: Minimization of spurious diffraction effects by geometric phase-shifting[J]. Optics Express, 17, 4495-4499(2009).

    [94] Freischlad K. Sub-angstrom surface metrology with a virtual reference interferometer[J]. Proceedings of SPIE, 8493, 84930B(2012).

    [95] Ullmann V, Emam S, Manske E. White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection[J]. Measurement Science and Technology, 26, 084010(2015).

    [96] de Groot P, Biegen J F. Interference microscope objectives for wide-field areal surface topography measurements[J]. Optical Engineering, 55, 074110(2016).

    [97] Dunsby C, Gu Y, French P M W. Single-shot phase-stepped wide-field coherencegated imaging[J]. Optics Express, 11, 105-115(2003).

    [98] Jeon J W, Jeong H W, Jeong H B et al. High-speed polarized low coherence scanning interferometry based on spatial phase shifting[J]. Applied Optics, 58, 5360-5365(2019).

    [99] Wiersma J T, Wyant J C. Vibration insensitive extended range interference microscopy[J]. Applied Optics, 52, 5957-5961(2013).

    [100] Tereschenko S, Lehmann P, Zellmer L et al. Passive vibration compensation in scanning white-light interferometry[J]. Applied Optics, 55, 6172-6182(2016).

    [101] Serbes H, Hagemeier S, Lehmann P. Mirau-type coherence scanning interferometer with integrated vibration compensation[J]. Proceedings of SPIE, 12137, 1213707(2022).

    [102] Pavliček P, Kučera J. Coherence scanning interferometry with a focus-tunable lens[J]. Applied Optics, 58, G91-G95(2019).

    [103] Pavliček P, Mikeska E. White-light interferometer without mechanical scanning[J]. Optics and Lasers in Engineering, 124, 105800(2020).

    [104] Colonna de Lega X, Dresel T, Liesener J et al. Optical form and relational metrology of aspheric micro optics[C], 20-23(2017).

    [105] Chen S, Lu W, Guo J et al. Flexible and high-resolution surface metrology based on stitching interference microscopy[J]. Optics and Lasers in Engineering, 151, 106915(2022).

    [106] Vivo A, Barrett R, Perrin F. Stitching techniques for measuring X-ray synchrotron mirror topography[J]. Review of Scientific Instruments, 90, 021710(2019).

    [107] Tang S. Stitching: high-spatial-resolution microsurface measurements over large areas[J]. Proceedings of SPIE, 3479, 43-49(1998).

    [108] Lowe D G. Object recognition from local scale-invariant features[C], 2, 1150-1157(1999).

    [109] Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features[C], 404-417.

    [110] Chen S, Lu W, Chen W et al. Efficient subaperture stitching method for measurement of large area microstructured topography[J]. Optics and Lasers in Engineering, 127, 105974(2020).

    [111] Lu W, Chen S, Zhang K et al. Characterization of diffractive relief structures over large areas by stitching interference microscopic topography[J]. Measurement, 202, 111850(2022).

    [112] Liu M Y, Cheung C F, Cheng C H et al. A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces[J]. Precision Engineering, 50, 99-106(2017).

    [113] Liu M Y, Cheung C F, Feng X et al. A self-calibration rotational stitching method for precision measurement of revolving surfaces[J]. Precision Engineering, 54, 60-69(2018).

    [114] Guo J, Zhai D, Lu W et al. Topography measurement of helical grooves on a hemisphere based on stitching interference microscopy[J]. Optics and Laser Technology, 152, 108133(2022).

    [115] de Groot P, Colonna de Lega X. Signal modeling for low-coherence height-scanning interference microscopy[J]. Applied Optics, 43, 4821-4830(2004).

    [116] Roy M, Cooper I, Moore P et al. White-light interference microscopy: effects of multiple reflections within a surface film[J]. Optics Express, 13, 164-170(2005).

    [117] Goodman J W[M]. Introduction to Fourier Optics(2017).

    [118] Harasaki A, Wyant J C. Fringe modulation skewing effect in white-light vertical scanning interferometry[J]. Applied Optics, 39, 2101-2106(2000).

    [119] Xie W, Lehmann P, Niehues J. Lateral resolution and transfer characteristics of vertical scanning white-light interferometers[J]. Applied Optics, 51, 1795-1803(2012).

    [120] de Groot P, Colonna de Lega X. Fourier optics modeling of interference microscopes[J]. Journal of the Optical Society of America A, 37, B1-B10(2020).

    [121] Colonna de Lega X, de Groot P. Lateral resolution and instrument transfer function as criteria for selecting surface metrology instruments[C], OTu1D. 4(2012).

    [122] de Groot P. The instrument transfer function for optical measurements of surface topography[J]. Journal of Physics: Photonics, 3, 024004(2021).

    [123] Coupland J M, HolographyLobera J.. tomography and 3D microscopy as linear filtering operations[J]. Measurement Science and Technology, 19, 074012(2008).

    [124] Gu M[M]. Advanced optical imaging theory(2000).

    [125] Mccutchen C. Generalized aperture and the three-dimensional diffraction image[J]. Journal of the Optical Society of America, 54, 240-244(1964).

    [126] Coupland J M, Mandal R, Palodhi K et al. Coherence scanning interferometry: linear theory of surface measurement[J]. Applied Optics, 52, 3662-3670(2013).

    [127] Su R, Coupland J M, Sheppard C J R et al. Scattering and three-dimensional imaging in surface topography measuring interference microscopy[J]. Journal of the Optical Society of America A, 38, A27-A42(2021).

    [128] Beckmann P, Spizzichino A[M]. The scattering of electromagnetic waves from rough surfaces(1987).

    [129] Su R, Thomas M, Liu M et al. Lens aberration compensation in interference microscopy[J]. Optics and Lasers in Engineering, 128, 106015(2020).

    [130] Sheppard C J R, Gu M. The significance of 3-D transfer functions in confocal scanning microscopy[J]. Journal of Microscopy, 165, 377-390(1992).

    [131] Sheppard C J R, Connolly T, Gu M. Scattering by a one-dimensional rough surface, and surface profile reconstruction by confocal imaging[J]. Physical Review Letters, 70, 1409(1993).

    [132] de Groot P J, Deck L L, Su R et al. Contributions of holography to the advancement of interferometric measurements of surface topography[J]. Light: Advanced Manufacturing, 3, 1-20(2022).

    [133] Xie W, Lehmann P, Niehues J et al. Signal modeling in low coherence interference microscopy on example of rectangular grating[J]. Optics Express, 24, 14283-14300(2016).

    [134] Lehmann P, Xie W, Allendorf B et al. Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit[J]. Optics Express, 26, 7376-7389(2018).

    [135] Moharam M, Gaylord T K. Three-dimensional vector coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 73, 1105-1112(1983).

    [136] Simonsen I. Optics of surface disordered systems[J]. The European Physical Journal Special Topics, 181, 1-103(2010).

    [137] Thomas M, Su R, Nikolaev N et al. Modeling of interference microscopy beyond the linear regime[J]. Optical Engineering, 59, 034110(2020).

    [138] Fang F, Zeng Z, Zhang X et al. Measurement of micro-V-groove dihedral using white light interferometry[J]. Optics Communications, 359, 297-303(2016).

    [139] Bischoff J, Pahl T, Lehmann P et al. Model-based dimensional optical metrology[J]. Proceedings of SPIE, 11352, 113520P(2020).

    [140] Giusca C L, Leach R K. Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution[J]. Measurement Science and Technology, 24, 105010(2013).

    [141] Eifler M, Ströer F, Hering J et al. User-oriented evaluation of the metrological characteristics of areal surface topography measuring instruments[J]. Proceedings of SPIE, 11056, 110560Y(2019).

    [142] de Groot P. The meaning and measure of vertical resolution in optical surface topography measurement[J]. Applied Sciences, 7, 54(2017).

    [143] Giusca C L, Leach R K, Helary F et al. Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness[J]. Measurement Science and Technology, 23, 035008(2012).

    [144] de Groot P, Disciacca J. Surface-height measurement noise in interference microscopy[J]. Proceedings of SPIE, 10749, 107490Q(2018).

    [145] Pavliček P, Hýbl O. White-light interferometry on rough surfaces: measurement uncertainty caused by noise[J]. Applied Optics, 51, 465-473(2012).

    [146] Liu M, Cheung C F, Ren M et al. Estimation of measurement uncertainty caused by surface gradient for a white light interferometer[J]. Applied Optics, 54, 8670-8677(2015).

    [147] Mun J I, Jo T, Kim T et al. Residual vibration reduction of white-light scanning interferometry by input shaping[J]. Optics Express, 23, 464-470(2015).

    [148] Song Z, Guo T, Fu X et al. Residual vibration control based on a global search method in a high-speed white light scanning interferometer[J]. Applied Optics, 57, 3415-3422(2018).

    [149] Giusca C L, Leach R K, Helery F. Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness[J]. Measurement Science and Technology, 23, 065005(2012).

    [150] de Groot P, Beverage J. Calibration of the amplification coefficient in interference microscopy by means of a wavelength standard[J]. Proceedings of SPIE, 9526, 952610(2015).

    [151] Henning A, Giusca C, Forbes A et al. Correction for lateral distortion in coherence scanning interferometry[J]. CIRP Annals-Manufacturing Technology, 62, 547-550(2013).

    [152] Qiao X Y, Chen X, Ding G Q et al. Scheme for position self-calibration based on least square method[J]. Acta Optica Sinica, 38, 1212001(2019).

    [153] Ekberg P, Stiblert L, Mattsson L. A new general approach for solving the self-calibration problem on large area 2D ultra-precision coordinate measurement machines[J]. Measurement Science and Technology, 25, 055001(2014).

    [154] Qiao X, Chen X, Ekberg P et al. Self-calibration for the 2D stage based on weighted least squares[J]. Measurement Science and Technology, 30, 125015(2019).

    [155] Ekberg P, Su R, Leach R K. High-precision lateral distortion measurement and correction in coherence scanning interferometry using an arbitrary surface[J]. Optics Express, 25, 18703-18712(2017).

    [156] Qiao X, Bai Y, Ding G et al. Measurement and correction of lateral distortion in a Fizeau interferometer based on the self-calibration technique[J]. Optics Express, 30, 36134-36143(2022).

    [157] Pförtner A, Schwider J. Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures[J]. Applied Optics, 40, 6223-6228(2001).

    [158] Colonna de Lega X. Aberration characterization using frequency domain analysis of low-coherence interferograms[J]. Proceedings of SPIE, 5531, 208-219(2004).

    [159] Lehmann P. Vertical scanning white-light interference microscopy on curved microstructures[J]. Optics Letters, 35, 1768-1770(2010).

    [160] Lehmann P, Kühnhold P, Xie W. Reduction of chromatic aberration influences in vertical scanning white-light interferometry[J]. Measurement Science and Technology, 25, 065203(2014).

    [161] Shahinian H, Hovis C D, Evans C J. Effect of retrace error on stitching coherent scanning interferometry measurements of freeform optics[J]. Optics Express, 29, 28562-28573(2021).

    [162] Su R, Thomas M, Leach R K et al. Effects of defocus on the transfer function of coherence scanning interferometry[J]. Optics Letters, 43, 82-85(2018).

    [163] Doi T, Toyoda K, Tanimura Y. Effects of phase changes on reflection and their wavelength dependence in optical profilometry[J]. Applied Optics, 36, 7157-7161(1997).

    [164] Harasaki A, Schmit J, Wyant J C. Offset of coherent envelope position due to phase change on reflection[J]. Applied Optics, 40, 2102-2106(2001).

    [165] Palodhi K, Coupland J M, Leach R K. Absolute surface topography measurement of composite structures using coherence scanning interferometry[C], 255-258(2011).

    [166] Raid I, Eifler M, Kusnezowa T et al. Calibration of ellipso-height-topometry with nanoscale gratings of varying materials[J]. Optik, 126, 4591-4596(2015).

    [167] Thomas M, Su R, de Groot P et al. Surface measuring coherence scanning interferometry beyond the specular reflection limit[J]. Optics Express, 29, 36121-36131(2021).

    [168] Coupland J M, Lobera J. Measurement of steep surfaces using white light interferometry[J]. Strain, 46, 69-78(2010).

    [169] Sheppard C J R, Larkin K. Effect of numerical aperture on interference fringe spacing[J]. Applied Optics, 34, 4731-4734(1995).

    [170] Lehmann P, Tereschenko S, Allendorf B et al. Spectral composition of low-coherence interferograms at high numerical apertures[J]. Journal of the European Optical Society-Rapid Publications, 15, 1-9(2019).

    [171] de Groot P, Colonna de Lega X, Su R et al. Does interferometry work? A critical look at the foundations of interferometric surface topography measurement[J]. Proceedings of SPIE, 11102, 111020G(2019).

    [172] Mandal R, Coupland J M, Leach R K et al. Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics[J]. Applied Optics, 53, 1554-1563(2014).

    [173] Su R, Coupland J M, Wang Y et al. Tolerance on sphere radius for the calibration of the transfer function of coherence scanning interferometry[J]. Proceedings of SPIE, 10329, 103290L(2017).

    [174] Su R, Wang Y, Coupland J M et al. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry[J]. Optics Express, 25, 3297-3310(2017).

    [175] Su R, Thomas M, De Groot P et al. Determination of the lateral resolution of an interference microsope using a micro-scale sphere[C].

    [178] Leach R K, Haitjema H, Su R et al. Metrological characteristics for the calibration of surface topography measuring instruments: a review[J]. Measurement Science and Technology, 32, 032001(2020).

    [179] Su R, Leach R K. Physics-based virtual coherence scanning interferometer for surface measurement[J]. Light: Advanced Manufacturing, 2, 120-135(2021).

    Rong Su, Jiayu Liu, Xiaoyue Qiao, Zhenxiong Jian, Zheng Zhang, Rongxian Wen, Cheng Chen, Mingjun Ren, Limin Zhu. Advances in Scanning White Light Interferometry for Surface Topography Measurement[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312005
    Download Citation