[1] Schmit J, Creath K, Wyant J C. Surface profilers, multiple wavelength, and white light intereferometry[M]. Malacara D. Optical shop testing, 667-755(2007).
[2] Damian V, Bojan M, Schiopu P et al. White light interferometry applications in nanometrology[J]. Proceedings of SPIE, 7297, 72971H(2009).
[3] Hariharan P. White-light interference microscopy[M]. Hariharan P. Basics of interferometry(2010).
[4] de Groot P. Coherence scanning interferometry[M]. Leach R K. Optical measurement of surface topography, 187-208(2011).
[5] Bauer W, Weber M, Chanbai S. White light interferometry[M]. Wang Q J, Chung Y W. Encyclopedia of tribology, 4115-4127(2013).
[6] de Groot P. Principles of interference microscopy for the measurement of surface topography[J]. Advances in Optics and Photonics, 7, 1-65(2015).
[7] de Groot P. Interference microscopy for surface structure analysis[M]. Yoshizawa T. Handbook of optical metrology principles and applications, 791-828(2015).
[8] de Groot P. A review of selected topics in interferometric optical metrology[J]. Reports on Progress in Physics, 82, 056101(2019).
[9] Su R. Coherence scanning interferometry[M]. Leach R K. Advances in optical surface texture metrology, 2-1—2-27(2020).
[10] Chinellato S, Pernechele C, Carmignato S et al. Surface measurements of radio antenna panels with white-light interferometry[J]. Proceedings of SPIE, 7739, 77392T(2010).
[11] Laopornpichayanuwat W, Visessamit J, Tianprateep M. 3-D surface roughness profile of 316-stainless steel using vertical scanning interferometry with a superluminescent diode[J]. Measurement, 45, 2400-2406(2012).
[12] Sachs R, Stanzel F. Interference microscopy for clean air-how optical metrology is improving quality control of fuel injection systems[C], 535-538(2013).
[13] Mukhtar H, Montgomery P, Gianto et al. Rock surface roughness measurement using CSI technique and analysis of surface characterization by qualitative and quantitative results[J]. IOP Conference Series: Earth and Environmental Science, 8, 012028(2016).
[14] Apedo K L, Montgomery P, Serres N et al. Geometrical roughness analysis of cement paste surfaces using coherence scanning interferometry and confocal microscopy[J]. Materials Characterization, 118, 212-224(2016).
[15] Zou Y, Li Y, Kaestner M et al. Low-coherence interferometry based roughness measurement on turbine blade surfaces using wavelet analysis[J]. Optics and Lasers in Engineering, 82, 113-121(2016).
[16] Sergeeva M, Khrenikov K, Hellmuth T et al. Sub surface damage measurements based on short coherent interferometry[J]. Journal of the European Optical Society-Rapid Publications, 5, 10003(2010).
[17] Bae E, Kim Y, Park S et al. Large-aperture ground glass surface profile measurement using coherence scanning interferometry[J]. Optics Express, 25, 1106-1113(2017).
[18] Yin Z, Guo R, Yang X et al. Measurement method for surface defects on ICF capsules based on white light interferometry[J]. Acta Optica Sinica, 42, 1012004(2022).
[19] Fay M, Colonna de Lega X, de Groot P. Measuring high-slope and super-smooth optics with high-dynamic-range coherence scanning interferometry[C], OW1B-3(2014).
[20] Mabwa D, Kubiena T, Parnell H et al. Evaluating the cytotoxicity of Ge-Sb-Se chalcogenide glass optical fibres on 3T3 mouse fibroblasts[J]. RSC Advances, 11, 8682-8693(2021).
[21] Lazzini G, Romoli L, Blunt L et al. Design and characterization of textured surfaces for applications in the food industry[J]. Surface Topography: Metrology and Properties, 5, 044005(2017).
[22] Speidel A, Su R, Mitchell-Smith J et al. Crystallographic texture can be rapidly determined by electrochemical surface analytics[J]. Acta Materialia, 159, 89-101(2018).
[23] Bermudez C, Martinez P, Cadevall C et al. High-speed, roll to roll coherence scanning interferometry in a laser texturing process[C], 176-177(2019).
[24] Sun Y F, Gao Z S, Ma J Q et al. Surface topography measurement of microstructures near the lateral resolution limit via coherence scanning interferometry[J]. Optics and Lasers in Engineering, 152, 106949(2022).
[25] Xin L, Liu X, Yang Z M et al. Three-dimensional reconstruction of super-resolved white-light interferograms based on deep learning[J]. Optics and Lasers in Engineering, 145, 106663(2021).
[26] Fay M F, Colonna de Lega X, Schmidt M. Measuring high-slope parts using coherence scanning interferometry[C], 604-608(2014).
[27] Matthew T, Su R, de Groot P et al. Optical topography measurement of steeply-sloped surfaces beyond the specular numerical aperture limit[J]. Proceedings of SPIE, 11352, 1135207(2020).
[28] Townsend A, Senin N, Blunt L et al. Surface texture metrology for metal additive manufacturing: a review[J]. Precision Engineering, 46, 34-47(2016).
[29] Leach R K, Bourell D, Carmignato S et al. Geometrical metrology for metal additive manufacturing[J]. CIRP Annals-Manufacturing Technology, 68, 677-700(2019).
[30] Senin N, Thompson A, Leach R K. Characterisation of the topography of metal additive surface features with different measurement technologies[J]. Measurement Science and Technology, 28, 095003(2017).
[31] Fay M, Badami V G, de Lega X. Characterizing additive manufacturing parts using coherence scanning interferometry[C], 135-138(2014).
[32] Gomez C, Su R, Thompson A et al. Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry[J]. Optical Engineering, 56, 111714(2017).
[33] Gomez C, Campanelli C, Su R et al. Surface-process correlation for an ink-jet printed transparent fluoroplastic[J]. Surface Topography: Metrology and Properties, 8, 034002(2020).
[34] Guo T, Wang R J, Ma L et al. Geometric parameter measurement of thick films by white light scanning interferometry[J]. Journal of Optoelectronics·Laser, 22, 1380-1383(2011).
[35] Chang S P, Xie T B, Sun Y L. Measurement of transparent film using vertical scanning white-light interferometry[C], 1063-1067.
[36] Liu S J, Zhang Y L, Zhang H C. Profile measurement of thin transparentsoft film surface[J]. Chinese Optics, 7, 326-331(2014).
[37] Pecheva E, Montgomery P, Montaner D et al. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers[J]. Langmuir: the ACS journal of surfaces and colloids, 23, 3912-3918(2007).
[38] Xue H, Shen W D, Gu P F et al. Thickness measurement of thin film based on white-light spectral interferometry[J]. Acta Optica Sinica, 29, 1877-1880(2009).
[39] Yoshino H, Abbas A, Kaminski P et al. Measurement of thin film interfacial surface roughness by coherence scanning interferometry[J]. Journal of Applied Physics, 121, 105303-105310(2017).
[40] Yang Y, Mansfield D. Characterisation of thin films using a coherence scanning interferometry[J]. Journal of Materials Science and Chemical Engineering, 3, 15(2015).
[41] Maniscalco B, Kaminski P M, Walls J M. Thin film thickness measurements using scanning white light interferometry[J]. Thin Solid Films, 550, 10-16(2014).
[42] de Groot P, Colonna de Lega X, Fay M. Transparent film profiling and analysis by interference microscopy[J]. Proceedings of SPIE, 7064, 706401(2008).
[43] Zhen C, YAO X R, Shi Y et al. Internal structure, surface morphology and optical property of semicrystalline polymer films[J]. Chemical Propellants and Polymeric Materials, 34, 7(2018).
[44] Feng X B, Senin N, Su R et al. Optical measurement of surface topographies with transparent coatings[J]. Optics and Lasers in Engineering, 121, 261-270(2019).
[45] de Groot P, Colonna de Lega X. Angle-resolved three-dimensional analysis of surface films by coherence scanning interferometry[J]. Optics Letters, 32, 1638-1640(2007).
[46] Fay M, Dresel T. Applications of model-based transparent surface films analysis using coherence-scanning interferometry[J]. Optical Engineering, 56, 111709-1-111709-6(2017).
[47] Mansfield D. Extraction of film interface surfaces from scanning white light interferometry[J]. Proceedings of SPIE, 7101, 71010U(2008).
[48] Yoshino H, Kaminski P M, Smith R et al. Refractive index determination by coherence scanning interferometry[J]. Applied Optics, 55, 4253-4260(2016).
[49] Claveau R, Montgomery P, Flury M et al. Local reflectance spectra measurements of surfaces using coherence scanning interferometry[J]. Proceedings of SPIE, 9890, 98900Q(2016).
[50] Marbach S, Claveau R, Wang F T et al. Wide-field parallel mapping of local spectral and topographic information with white light interference microscopy[J]. Optics Letters, 46, 809-812(2021).
[51] Watanabe K, Ohshima M, Nomura T. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning[J]. Journal of Optics, 16, 045403(2014).
[52] Nakano K, Hane K, Okuma S et al. Visualization of 50 MHz surface acoustic wave propagation using stroboscopic phase-shift interferometry[J]. Optical Review, 4, 265-269(1997).
[53] de Groot P. Stroboscopic white-light interference microscopy[J]. Applied Optics, 45, 5840-5844(2006).
[54] Hanhijarvi K, Kassamakov I, Aaltonen J et al. Through-silicon stroboscopic characterization of an oscillating mems thermal actuator using supercontinuum interferometry[J]. IEEE/ASME Transactions on Mechatronics, 18, 1418-1420(2013).
[55] Heikkinen V, Kassamakov I, Paulin T et al. Stroboscopic scanning white light interferometry at 2.7 MHz with 1.6 μm coherence length using a non-phosphor LED source[J]. Optics Express, 21, 5247-5254(2013).
[56] Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry[J]. Journal of the Optical Society of America A, 13, 832-843(1996).
[57] Sandoz P. Wavelet transform as a processing tool in white-light interferometry[J]. Optics Letters, 22, 1065-1067(1997).
[58] de Groot P, Deck L. Surface profiling by analysis of white-light interferograms in the spatial frequency domain[J]. Journal of Modern Optics, 42, 389-401(1995).
[59] de Groot P, Colonna de Lega X, Kramer J et al. Determination of fringe order in white-light interference microscopy[J]. Applied Optics, 41, 4571-4578(2002).
[60] Kino G S, Chim S S C. Mirau correlation microscope[J]. Applied Optics, 29, 3775-3783(1990).
[61] Harasaki A, Schmit J, Wyant J C. Improved vertical-scanning interferometry[J]. Applied Optics, 39, 2107-2115(2000).
[62] Pavlicek P, Michalek V. White-light interferometry-envelope detection by Hilbert transform and influence of noise[J]. Optics and Lasers in Engineering, 50, 1063-1068(2012).
[63] Montgomery P, Salzenstein F, Montaner D et al. Implementation of a fringe visibility based algorithm in coherence scanning interferometry for surface roughness measurement[J]. Proceedings of SPIE, 8788, 87883G(2013).
[64] Gianto G, Salzenstein F, Montgomery P. Comparison of envelope detection techniques in coherence scanning interferometry[J]. Applied Optics, 55, 6763-6774(2016).
[65] Hissmann M, Hamprecht F A. Bayesian surface estimation for white light interferometry[J]. Optical Engineering, 44, 015601(2005).
[66] Guo T, Ma L, Chen J P et al. Microelectromechanical systems surface characterization based on white light phase shifting interferometry[J]. Optical Engineering, 50, 053606(2011).
[67] Ghim Y S, Davies A. Complete fringe order determination in scanning white-light interferometry using a Fourier-based technique[J]. Applied Optics, 51, 1922-1928(2012).
[68] Ma S, Quan C, Zhu R et al. Application of least-square estimation in white-light scanning interferometry[J]. Optics and Lasers in Engineering, 49, 1012-1018(2011).
[69] Vo Q, Fang F, Zhang X et al. Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms[J]. Applied Optics, 56, 8174-8185(2017).
[70] Huang Y, Gao J, Zhang L et al. Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement[J]. Applied Optics, 59, 1082-1091(2020).
[71] Wu D, Fang F. Development of surface reconstruction algorithms for optical interferometric measurement[J]. Frontiers of Mechanical Engineering, 16, 1-31(2021).
[72] Gomez C, Su R, de Groot P et al. Noise reduction in coherence scanning interferometry for surface topography measurement[J]. Nanomanufacturing and Metrology, 3, 68-76(2020).
[73] Wiesner B, Hybl O, Hausler G. Improved white-light interferometry on rough surfaces by statistically independent speckle patterns[J]. Applied Optics, 51, 751-757(2012).
[74] de Groot P, Colonna de Lega X, Liesener J et al. Metrology of optically-unresolved features using interferometric surface profiling and RCWA modeling[J]. Optics Express, 16, 3970-3975(2008).
[75] Olszak A. Lateral scanning white-light interferometer[J]. Applied Optics, 39, 3906-3913(2000).
[76] Chen L C, Le M T, Lin Y S. 3-D micro surface profilometry employing novel Mirau-based lateral scanning interferometry[J]. Measurement Science and Technology, 25, 094004(2014).
[77] Yang W, Liu X, Hu C et al. Rapid characterization of nano-scale structures in large-scale ultra-precision surfaces[J]. Optics and Lasers in Engineering, 134, 106200(2020).
[78] Wang J, Su R, Leach R K et al. Resolution enhancement for topography measurement of high-dynamic-range surfaces via image fusion[J]. Optics Express, 26, 34805-34819(2018).
[79] Leach R K, Sims-Waterhouse D, Medeossi F et al. Fusion of photogrammetry and coherence scanning interferometry data for all-optical coordinate measurement[J]. CIRP Annals-Manufacturing Technology, 67, 599-602(2018).
[80] Montgomery P, Lecler S, Leong-Hoi A et al. High Resolution Surface Metrology Using Microsphere-Assisted Interference Microscopy[J]. Physica Status Solidi A, 216, 1800761(2019).
[81] Perrin S, Lecler S, Montgomery P. Microsphere-assisted interference microscopy[M]. Astratov V. Label-free super-resolution microscopy, 443-469(2019).
[82] Perrin S, Leong-Hoi A, Lecler S et al. Microsphere-assisted phase-shifting profilometry[J]. Applied Optics, 56, 7249-7255(2017).
[83] Pahl T, Hüser L, Hagemeier S et al. FEM-based modeling of microsphere-enhanced interferometry[J]. Light: Advanced Manufacturing, 3, 1-13(2022).
[84] Colonna de Lega X, de Groot P. Characterization of materials and film stacks for accurate surface topography measurement using a white-light optical profiler[J]. Proceedings of SPIE, 6995, 69950P(2008).
[85] Paz V F, Peterhänsel S, Frenner K et al. Solving the inverse grating problem by white light interference Fourier scatterometry[J]. Light: Science & Applications, 1, e36(2012).
[86] Gödecke M L, Frenner K, Osten W. Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry[J]. Light: Advanced Manufacturing, 2, 237-50(2021).
[87] Niehues J, Lehmann P, Bobey K. Dual-wavelength vertical scanning low-coherence interferometric microscope[J]. Applied Optics, 46, 7141-7148(2007).
[88] Oh J S, Kim S-W. Femtosecond laser pulses for surface-profile metrology[J]. Optics Letters, 30, 2650-2652(2005).
[89] Joo W-D, Kim S, Park J et al. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures[J]. Optics Express, 21, 15323(2013).
[90] Lu Y, Park J, Yu L et al. 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser[J]. Applied Optics, 57, 2584-2589(2018).
[91] Kassamakov I, Hanhijärvi K, Abbadi I et al. Scanning white-light interferometry with a supercontinuum source[J]. Optics Letters, 34, 1582-1584(2009).
[92] Roy M, Svahn P, Cherel L et al. Geometric phase-shifting for low-coherence interference microscopy[J]. Optics and Lasers in Engineering, 37, 631-641(2002).
[93] Roy M, Schmit J, Hariharan P. White-light interference microscopy: Minimization of spurious diffraction effects by geometric phase-shifting[J]. Optics Express, 17, 4495-4499(2009).
[94] Freischlad K. Sub-angstrom surface metrology with a virtual reference interferometer[J]. Proceedings of SPIE, 8493, 84930B(2012).
[95] Ullmann V, Emam S, Manske E. White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection[J]. Measurement Science and Technology, 26, 084010(2015).
[96] de Groot P, Biegen J F. Interference microscope objectives for wide-field areal surface topography measurements[J]. Optical Engineering, 55, 074110(2016).
[97] Dunsby C, Gu Y, French P M W. Single-shot phase-stepped wide-field coherencegated imaging[J]. Optics Express, 11, 105-115(2003).
[98] Jeon J W, Jeong H W, Jeong H B et al. High-speed polarized low coherence scanning interferometry based on spatial phase shifting[J]. Applied Optics, 58, 5360-5365(2019).
[99] Wiersma J T, Wyant J C. Vibration insensitive extended range interference microscopy[J]. Applied Optics, 52, 5957-5961(2013).
[100] Tereschenko S, Lehmann P, Zellmer L et al. Passive vibration compensation in scanning white-light interferometry[J]. Applied Optics, 55, 6172-6182(2016).
[101] Serbes H, Hagemeier S, Lehmann P. Mirau-type coherence scanning interferometer with integrated vibration compensation[J]. Proceedings of SPIE, 12137, 1213707(2022).
[102] Pavliček P, Kučera J. Coherence scanning interferometry with a focus-tunable lens[J]. Applied Optics, 58, G91-G95(2019).
[103] Pavliček P, Mikeska E. White-light interferometer without mechanical scanning[J]. Optics and Lasers in Engineering, 124, 105800(2020).
[104] Colonna de Lega X, Dresel T, Liesener J et al. Optical form and relational metrology of aspheric micro optics[C], 20-23(2017).
[105] Chen S, Lu W, Guo J et al. Flexible and high-resolution surface metrology based on stitching interference microscopy[J]. Optics and Lasers in Engineering, 151, 106915(2022).
[106] Vivo A, Barrett R, Perrin F. Stitching techniques for measuring X-ray synchrotron mirror topography[J]. Review of Scientific Instruments, 90, 021710(2019).
[107] Tang S. Stitching: high-spatial-resolution microsurface measurements over large areas[J]. Proceedings of SPIE, 3479, 43-49(1998).
[108] Lowe D G. Object recognition from local scale-invariant features[C], 2, 1150-1157(1999).
[109] Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features[C], 404-417.
[110] Chen S, Lu W, Chen W et al. Efficient subaperture stitching method for measurement of large area microstructured topography[J]. Optics and Lasers in Engineering, 127, 105974(2020).
[111] Lu W, Chen S, Zhang K et al. Characterization of diffractive relief structures over large areas by stitching interference microscopic topography[J]. Measurement, 202, 111850(2022).
[112] Liu M Y, Cheung C F, Cheng C H et al. A Gaussian process and image registration based stitching method for high dynamic range measurement of precision surfaces[J]. Precision Engineering, 50, 99-106(2017).
[113] Liu M Y, Cheung C F, Feng X et al. A self-calibration rotational stitching method for precision measurement of revolving surfaces[J]. Precision Engineering, 54, 60-69(2018).
[114] Guo J, Zhai D, Lu W et al. Topography measurement of helical grooves on a hemisphere based on stitching interference microscopy[J]. Optics and Laser Technology, 152, 108133(2022).
[115] de Groot P, Colonna de Lega X. Signal modeling for low-coherence height-scanning interference microscopy[J]. Applied Optics, 43, 4821-4830(2004).
[116] Roy M, Cooper I, Moore P et al. White-light interference microscopy: effects of multiple reflections within a surface film[J]. Optics Express, 13, 164-170(2005).
[117] Goodman J W[M]. Introduction to Fourier Optics(2017).
[118] Harasaki A, Wyant J C. Fringe modulation skewing effect in white-light vertical scanning interferometry[J]. Applied Optics, 39, 2101-2106(2000).
[119] Xie W, Lehmann P, Niehues J. Lateral resolution and transfer characteristics of vertical scanning white-light interferometers[J]. Applied Optics, 51, 1795-1803(2012).
[120] de Groot P, Colonna de Lega X. Fourier optics modeling of interference microscopes[J]. Journal of the Optical Society of America A, 37, B1-B10(2020).
[121] Colonna de Lega X, de Groot P. Lateral resolution and instrument transfer function as criteria for selecting surface metrology instruments[C], OTu1D. 4(2012).
[122] de Groot P. The instrument transfer function for optical measurements of surface topography[J]. Journal of Physics: Photonics, 3, 024004(2021).
[123] Coupland J M, HolographyLobera J.. tomography and 3D microscopy as linear filtering operations[J]. Measurement Science and Technology, 19, 074012(2008).
[124] Gu M[M]. Advanced optical imaging theory(2000).
[125] Mccutchen C. Generalized aperture and the three-dimensional diffraction image[J]. Journal of the Optical Society of America, 54, 240-244(1964).
[126] Coupland J M, Mandal R, Palodhi K et al. Coherence scanning interferometry: linear theory of surface measurement[J]. Applied Optics, 52, 3662-3670(2013).
[127] Su R, Coupland J M, Sheppard C J R et al. Scattering and three-dimensional imaging in surface topography measuring interference microscopy[J]. Journal of the Optical Society of America A, 38, A27-A42(2021).
[128] Beckmann P, Spizzichino A[M]. The scattering of electromagnetic waves from rough surfaces(1987).
[129] Su R, Thomas M, Liu M et al. Lens aberration compensation in interference microscopy[J]. Optics and Lasers in Engineering, 128, 106015(2020).
[130] Sheppard C J R, Gu M. The significance of 3-D transfer functions in confocal scanning microscopy[J]. Journal of Microscopy, 165, 377-390(1992).
[131] Sheppard C J R, Connolly T, Gu M. Scattering by a one-dimensional rough surface, and surface profile reconstruction by confocal imaging[J]. Physical Review Letters, 70, 1409(1993).
[132] de Groot P J, Deck L L, Su R et al. Contributions of holography to the advancement of interferometric measurements of surface topography[J]. Light: Advanced Manufacturing, 3, 1-20(2022).
[133] Xie W, Lehmann P, Niehues J et al. Signal modeling in low coherence interference microscopy on example of rectangular grating[J]. Optics Express, 24, 14283-14300(2016).
[134] Lehmann P, Xie W, Allendorf B et al. Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit[J]. Optics Express, 26, 7376-7389(2018).
[135] Moharam M, Gaylord T K. Three-dimensional vector coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 73, 1105-1112(1983).
[136] Simonsen I. Optics of surface disordered systems[J]. The European Physical Journal Special Topics, 181, 1-103(2010).
[137] Thomas M, Su R, Nikolaev N et al. Modeling of interference microscopy beyond the linear regime[J]. Optical Engineering, 59, 034110(2020).
[138] Fang F, Zeng Z, Zhang X et al. Measurement of micro-V-groove dihedral using white light interferometry[J]. Optics Communications, 359, 297-303(2016).
[139] Bischoff J, Pahl T, Lehmann P et al. Model-based dimensional optical metrology[J]. Proceedings of SPIE, 11352, 113520P(2020).
[140] Giusca C L, Leach R K. Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution[J]. Measurement Science and Technology, 24, 105010(2013).
[141] Eifler M, Ströer F, Hering J et al. User-oriented evaluation of the metrological characteristics of areal surface topography measuring instruments[J]. Proceedings of SPIE, 11056, 110560Y(2019).
[142] de Groot P. The meaning and measure of vertical resolution in optical surface topography measurement[J]. Applied Sciences, 7, 54(2017).
[143] Giusca C L, Leach R K, Helary F et al. Calibration of the scales of areal surface topography-measuring instruments: part 1. Measurement noise and residual flatness[J]. Measurement Science and Technology, 23, 035008(2012).
[144] de Groot P, Disciacca J. Surface-height measurement noise in interference microscopy[J]. Proceedings of SPIE, 10749, 107490Q(2018).
[145] Pavliček P, Hýbl O. White-light interferometry on rough surfaces: measurement uncertainty caused by noise[J]. Applied Optics, 51, 465-473(2012).
[146] Liu M, Cheung C F, Ren M et al. Estimation of measurement uncertainty caused by surface gradient for a white light interferometer[J]. Applied Optics, 54, 8670-8677(2015).
[147] Mun J I, Jo T, Kim T et al. Residual vibration reduction of white-light scanning interferometry by input shaping[J]. Optics Express, 23, 464-470(2015).
[148] Song Z, Guo T, Fu X et al. Residual vibration control based on a global search method in a high-speed white light scanning interferometer[J]. Applied Optics, 57, 3415-3422(2018).
[149] Giusca C L, Leach R K, Helery F. Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness[J]. Measurement Science and Technology, 23, 065005(2012).
[150] de Groot P, Beverage J. Calibration of the amplification coefficient in interference microscopy by means of a wavelength standard[J]. Proceedings of SPIE, 9526, 952610(2015).
[151] Henning A, Giusca C, Forbes A et al. Correction for lateral distortion in coherence scanning interferometry[J]. CIRP Annals-Manufacturing Technology, 62, 547-550(2013).
[152] Qiao X Y, Chen X, Ding G Q et al. Scheme for position self-calibration based on least square method[J]. Acta Optica Sinica, 38, 1212001(2019).
[153] Ekberg P, Stiblert L, Mattsson L. A new general approach for solving the self-calibration problem on large area 2D ultra-precision coordinate measurement machines[J]. Measurement Science and Technology, 25, 055001(2014).
[154] Qiao X, Chen X, Ekberg P et al. Self-calibration for the 2D stage based on weighted least squares[J]. Measurement Science and Technology, 30, 125015(2019).
[155] Ekberg P, Su R, Leach R K. High-precision lateral distortion measurement and correction in coherence scanning interferometry using an arbitrary surface[J]. Optics Express, 25, 18703-18712(2017).
[156] Qiao X, Bai Y, Ding G et al. Measurement and correction of lateral distortion in a Fizeau interferometer based on the self-calibration technique[J]. Optics Express, 30, 36134-36143(2022).
[157] Pförtner A, Schwider J. Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures[J]. Applied Optics, 40, 6223-6228(2001).
[158] Colonna de Lega X. Aberration characterization using frequency domain analysis of low-coherence interferograms[J]. Proceedings of SPIE, 5531, 208-219(2004).
[159] Lehmann P. Vertical scanning white-light interference microscopy on curved microstructures[J]. Optics Letters, 35, 1768-1770(2010).
[160] Lehmann P, Kühnhold P, Xie W. Reduction of chromatic aberration influences in vertical scanning white-light interferometry[J]. Measurement Science and Technology, 25, 065203(2014).
[161] Shahinian H, Hovis C D, Evans C J. Effect of retrace error on stitching coherent scanning interferometry measurements of freeform optics[J]. Optics Express, 29, 28562-28573(2021).
[162] Su R, Thomas M, Leach R K et al. Effects of defocus on the transfer function of coherence scanning interferometry[J]. Optics Letters, 43, 82-85(2018).
[163] Doi T, Toyoda K, Tanimura Y. Effects of phase changes on reflection and their wavelength dependence in optical profilometry[J]. Applied Optics, 36, 7157-7161(1997).
[164] Harasaki A, Schmit J, Wyant J C. Offset of coherent envelope position due to phase change on reflection[J]. Applied Optics, 40, 2102-2106(2001).
[165] Palodhi K, Coupland J M, Leach R K. Absolute surface topography measurement of composite structures using coherence scanning interferometry[C], 255-258(2011).
[166] Raid I, Eifler M, Kusnezowa T et al. Calibration of ellipso-height-topometry with nanoscale gratings of varying materials[J]. Optik, 126, 4591-4596(2015).
[167] Thomas M, Su R, de Groot P et al. Surface measuring coherence scanning interferometry beyond the specular reflection limit[J]. Optics Express, 29, 36121-36131(2021).
[168] Coupland J M, Lobera J. Measurement of steep surfaces using white light interferometry[J]. Strain, 46, 69-78(2010).
[169] Sheppard C J R, Larkin K. Effect of numerical aperture on interference fringe spacing[J]. Applied Optics, 34, 4731-4734(1995).
[170] Lehmann P, Tereschenko S, Allendorf B et al. Spectral composition of low-coherence interferograms at high numerical apertures[J]. Journal of the European Optical Society-Rapid Publications, 15, 1-9(2019).
[171] de Groot P, Colonna de Lega X, Su R et al. Does interferometry work? A critical look at the foundations of interferometric surface topography measurement[J]. Proceedings of SPIE, 11102, 111020G(2019).
[172] Mandal R, Coupland J M, Leach R K et al. Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics[J]. Applied Optics, 53, 1554-1563(2014).
[173] Su R, Coupland J M, Wang Y et al. Tolerance on sphere radius for the calibration of the transfer function of coherence scanning interferometry[J]. Proceedings of SPIE, 10329, 103290L(2017).
[174] Su R, Wang Y, Coupland J M et al. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry[J]. Optics Express, 25, 3297-3310(2017).
[175] Su R, Thomas M, De Groot P et al. Determination of the lateral resolution of an interference microsope using a micro-scale sphere[C].
[178] Leach R K, Haitjema H, Su R et al. Metrological characteristics for the calibration of surface topography measuring instruments: a review[J]. Measurement Science and Technology, 32, 032001(2020).
[179] Su R, Leach R K. Physics-based virtual coherence scanning interferometer for surface measurement[J]. Light: Advanced Manufacturing, 2, 120-135(2021).