• Journal of Advanced Dielectrics
  • Vol. 11, Issue 1, 2150004 (2021)
N. Lyapunov1, C. H. Suen1, C. M. Wong1, Xiaodan Tang2, Z. L. Ho1, K. Zhou2, X. X. Chen1, H. M. Liu1, Xiaoyuan Zhou2、*, and J. Y. Dai1、**
Author Affiliations
  • 1Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
  • 2College of Physics, Chongqing University, Chongqing 401331, P. R. China
  • show less
    DOI: 10.1142/S2010135X21500041 Cite this Article
    N. Lyapunov, C. H. Suen, C. M. Wong, Xiaodan Tang, Z. L. Ho, K. Zhou, X. X. Chen, H. M. Liu, Xiaoyuan Zhou, J. Y. Dai. Ultralow switching voltage and power consumption of GeS2 thin film resistive switching memory[J]. Journal of Advanced Dielectrics, 2021, 11(1): 2150004 Copy Citation Text show less
    References

    [1] H.-Y. Chenet?al. Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication. J. Electroceram., 39, 21(2017).

    [2] M. Lanzaet?al. Recommended methods to study resistive switching devices. Adv. Electron. Mater., 5, 1800143(2019).

    [3] D. Kuzum, S. Yu, H.-S. Philip Wong. Synaptic electronics: Materials, devices and applications. Nanotechnology, 24, 382001(2013).

    [4] I. Valovet?al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun., 4, 1771(2013).

    [5] X. Honget?al. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci., 53, 8720(2018).

    [6] J. R. Jamesonet?al. (Invited) Conductive Bridging RAM (CBRAM): Then, now, and tomorrow. ECS Trans., 75, 41(2016).

    [7] I. Valov. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semicond. Sci. Technol., 32, 093006(2017).

    [8] H.-S. P. Wonget?al. Metal–oxide RRAM. Proc. IEEE, 100, 1951(2012).

    [9] T. Ohnoet?al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater., 10, 591(2011).

    [10] J. R. Jamesonet?al. Conductive-bridge memory (CBRAM) with excellent high-temperature retention. 2013 IEEE Int. Electron Devices Meeting, 30.1.1-30.1.4(2013). https://doi.org/10.1109/IEDM.2013.6724721

    [11] G. Palmaet?al. Experimental investigation and empirical modeling of the set and reset kinetics of Ag-GeS2 conductive bridging memories. 2012 4th IEEE Int. Memory Workshop, 1-4(2012). https://doi.org/10.1109/IMW.2012.6213680

    [12] F. Longnoset?al. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories. Solid-State Electron., 84, 155(2013).

    [13] G. Palmaet?al. Interface engineering of Ag-GeS2-based conductive bridge RAM for reconfigurable logic applications. IEEE Trans. Electron Devices, 61, 793(2014).

    [14] Y. Murakami, M. Wakaki. Observation of Ag photodoping phenomena in GeS2 chalcogenide glass films by spectroscopic ellipsometry and atomic force microscopy. Thin Solid Films, 542, 246(2013).

    [15] M. Mitkova, M. N. Kozicki. Silver incorporation in Ge–Se glasses used in programmable metallization cell devices. J. Non-Crystalline Solids, 299–302, 1023(2002).

    [16] H. Horton, K. L. Peatt, R. M. Lambert. Surface photo-oxidation and Ag deposition on amorphous GeS2. J. Phys.: Condens. Matter, 5, 9037(1993).

    [17] S. I. Sadovnikov, E. Yu. Gerasimov. Direct TEM observation of the “acanthite α-Ag 2 S–argentite β-Ag2 S” phase transition in a silver sulfide nanoparticle. Nanoscale Adv., 1, 1581(2019).

    [18] J. Lee, W. D. Lu. On-demand reconfiguration of nanomaterials: When electronics meets ionics. Adv. Mater., 30, 1702770(2018).

    [19] F. Panet?al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci.: Mater. Int., 20, 1(2010).

    [20] R. Waser, R. Dittmann, G. Staikov, K. Szot. Redox-based resistive switching memories - Nanoionic mechanisms, prospects, and challenges. Adv. Mater., 21, 2632(2009).

    [21] K. Onlaor, T. Thiwawong, B. Tunhoo. Electrical switching and conduction mechanisms of nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polyvinylpyrrolidone. Org. Electron., 15, 1254(2014).

    [22] J. van den Hurk, V. Havel, E. Linn, R. Waser, I. Valov. Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/Nanoelectronic logic and memory architectures. Sci. Rep., 3, 2856(2013).

    [23] E. Linn, S. Menzel, S. Ferch, R. Waser. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications. Nanotechnology, 24, 384008(2013).

    [24] E. Linn, R. Rosezin, C. Kügeler, R. Waser. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater., 9, 403(2010).

    N. Lyapunov, C. H. Suen, C. M. Wong, Xiaodan Tang, Z. L. Ho, K. Zhou, X. X. Chen, H. M. Liu, Xiaoyuan Zhou, J. Y. Dai. Ultralow switching voltage and power consumption of GeS2 thin film resistive switching memory[J]. Journal of Advanced Dielectrics, 2021, 11(1): 2150004
    Download Citation