• Photonics Research
  • Vol. 7, Issue 3, 368 (2019)
Tian Zhang1, Jia Wang1, Qi Liu1, Jinzan Zhou1, Jian Dai1, Xu Han2, Yue Zhou1, and Kun Xu1、*
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Huawei Technologies Co., Ltd., Shenzhen 518129, China
  • show less
    DOI: 10.1364/PRJ.7.000368 Cite this Article Set citation alerts
    Tian Zhang, Jia Wang, Qi Liu, Jinzan Zhou, Jian Dai, Xu Han, Yue Zhou, Kun Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks[J]. Photonics Research, 2019, 7(3): 368 Copy Citation Text show less
    References

    [1] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [2] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [3] A. B. Khanikaev, C. Wu, G. Shvets. Fano-resonant metamaterials and their applications. Nanophotonics, 2, 247-264(2013).

    [4] T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, K. Xu. Dynamically tunable plasmon induced absorption in graphene-assisted metallodielectric grating. Opt. Express, 25, 26221-26233(2017).

    [5] T. Zhang, J. Dai, Y. Dai, Y. Fan, X. Han, J. Li, F. Yin, Y. Zhou, K. Xu. Tunable plasmon induced transparency in a metallodielectric grating coupled with graphene metamaterials. J. Lightwave Technol., 35, 5142-5149(2017).

    [6] R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma. Phase-coupled plasmon-induced transparency. Phys. Rev. Lett., 104, 243902(2010).

    [7] H. Lu, X. Liu, D. Mao. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A, 85, 053803(2012).

    [8] Z. He, H. Li, S. Zhan, G. Cao, B. Li. Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt. Lett., 39, 5543-5546(2014).

    [9] X. Han, T. Wang, X. Li, B. Liu, Y. He, J. Tang. Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators. J. Lightwave Technol., 33, 5133-5139(2015).

    [10] H. Li, L. Wang, J. Liu, Z. Huang, B. Sun, X. Zhai. Investigation of the graphene based planar plasmonic filters. Appl. Phys. Lett., 103, 211104(2013).

    [11] X. Han, T. Wang, X. Li, S. Xiao, Y. Zhu. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Opt. Express, 23, 31945-31955(2015).

    [12] H. Lu, X. Gan, D. Mao, J. Zhao. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon. Res., 5, 162-167(2017).

    [13] L. Chen, T. Zhang, X. Li, W. P. Huang. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Opt. Express, 20, 20535-20544(2012).

    [14] Y. Zhu, X. Hu, H. Yang, Q. Gong. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep., 4, 3752(2014).

    [15] Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, Q. Gong. Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Adv. Opt. Mater., 2, 320-325(2014).

    [16] Z. Chai, X. Hu, H. Yang, Q. Gong. All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption. Appl. Phys. Lett., 108, 151104(2016).

    [17] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [18] X. Han, T. Wang, B. Liu, Y. He, Y. Zhu. Tunable triple plasmon-induced transparencies in dual T-shaped cavities side-coupled waveguide. IEEE Photon. Technol. Lett., 28, 347-350(2016).

    [19] Z. Chen, L. Yu. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photon. J., 6, 4802208(2014).

    [20] S. Inampudi, H. Mosallaei. Neural network based design of metagratings. Appl. Phys. Lett., 112, 241102(2018).

    [21] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [22] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [23] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [24] H. Cui, X. Sun, Z. Yu. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett., 42, 3093-3096(2017).

    [25] J. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J. K. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868-3871(2016).

    [26] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, A. W. Rodriguez. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).

    [27] T. W. Hughes, M. Minkov, I. A. Williamson, S. Fan. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon., 5, 4781-4787(2018).

    [28] Z. Yu, H. Cui, X. Sun. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities. Photon. Res., 5, B15-B19(2017).

    [29] E. Bor, C. Babayigit, H. Kurt, K. Staliunas, M. Turduev. Directional invisibility by genetic optimization. Opt. Lett., 43, 5781-5784(2018).

    [30] P.-H. Fu, S.-C. Lo, P.-C. Tsai, K.-L. Lee, P.-K. Wei. Optimization for gold nanostructure-based surface plasmon biosensors using a microgenetic algorithm. ACS Photon., 5, 2320-2327(2018).

    [31] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

    [32] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Canorenteria, B. Delacy, M. Tegmark, J. D. Joannopoulos, M. Soljacic. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [33] K. Kojima, B. Wang, U. Kamilov, T. Koike-Akino, K. Parsons. Acceleration of FDTD-based inverse design using a neural network approach. Integrated Photonics Research, Silicon and Nanophotonics, ITu1A.4(2017).

    [34] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365-1369(2018).

    [35] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated nanophotonic devices(2018).

    [36] W. Ma, F. Cheng, Y. Liu. Deep-learning enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [37] I. Malkiel, A. Nagler, M. Mrejen, U. Arieli, L. Wolf, H. Suchowski. Deep learning for design and retrieval of nano-photonic structures(2017).

    [38] R. R. Andrawis, M. A. Swillam, M. A. El-Gamal, E. A. Soliman. Artificial neural network modeling of plasmonic transmission lines. Appl. Opt., 55, 2780-2790(2016).

    [39] M. Turduev, E. Bor, C. Latifoglu, I. H. Giden, Y. S. Hanay, H. Kurt. Ultra-compact photonic structure design for strong light confinement and coupling into nano-waveguide. J. Lightwave Technol., 36, 2812-2819(2018).

    [40] E. Bor, O. Alparslan, M. Turduev, Y. S. Hanay, H. Kurt, S. I. Arakawa, M. Murata. Integrated silicon photonic device design by attractor selection mechanism based on artificial neural networks: optical coupler and asymmetric light transmitter. Opt. Express, 26, 29032-29044(2018).

    [41] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, W. Cai. A generative model for inverse design of metamaterials(2018).

    [42] B. Baker, O. Gupta, N. Naik, R. Raskar. Designing neural network architectures using reinforcement learning(2016).

    [43] K. O. Stanley, R. Miikkulainen. Evolving neural networks through augmenting topologies. Evol. Comput., 10, 99-127(2002).

    [44] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. De Freitas. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE, 104, 148-175(2016).

    [45] B. Zoph, Q. V. Le. Neural architecture search with reinforcement learning(2016).

    [46] T. Wang, Y. Zhang, Z. Hong, Z. Han. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators. Opt. Express, 22, 21529-21534(2014).

    [47] Z. Zhang, L. Zhang, H. Li, H. Chen. Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl. Phys. Lett., 104, 231114(2014).

    [48] A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, M. Shur. Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt. Lett., 41, 5333-5336(2016).

    [49] M. Qin, L. Wang, X. Zhai, D. Chen, S. Xia. Generating and manipulating high quality factors of Fano resonance in nanoring resonator by stacking a half nanoring. Nano. Res. Lett., 12, 578(2017).

    [50] H. Lu, X. Liu, D. Mao, G. Wang. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett., 37, 3780-3782(2012).

    [51] C. Wu, A. B. Khanikaev, G. Shvets. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett., 106, 107403(2011).

    [52] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [53] G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications(2013).

    [54] A. Devarakonda, M. Naumov, M. Garland. AdaBatch: adaptive batch sizes for training deep neural networks(2017).

    [55]

    [56] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljačić. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [57] G. C. Cawley, N. L. Talbot. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 11, 2079-2107(2010).

    [58] P. B. Johnson, R. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [59] A. Chipperfield, P. Fleming. The MATLAB genetic algorithm toolbox. IEEE Colloquium on Applied Control Techniques Using MATLAB(1995).

    [60] P. Ghamisi, J. A. Benediktsson. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett., 12, 309-313(2015).

    [61] A. da Silva Ferreira, C. H. da Silva Santos, M. S. Gonçalves, H. E. H. Figueroa. Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices. Appl. Soft Comput., 65, 1-11(2018).

    CLP Journals

    [1] Qiang Cai, Ya Guo, Pu Li, Adonis Bogris, K. Alan Shore, Yamei Zhang, Yuncai Wang. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing[J]. Photonics Research, 2021, 9(1): B1

    [2] Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu. Intelligent algorithms: new avenues for designing nanophotonic devices [Invited][J]. Chinese Optics Letters, 2021, 19(1): 011301

    [3] Peng Dai, Yasi Wang, Yueqiang Hu, C. H. de Groot, Otto Muskens, Huigao Duan, Ruomeng Huang. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network[J]. Photonics Research, 2021, 9(5): B236

    Tian Zhang, Jia Wang, Qi Liu, Jinzan Zhou, Jian Dai, Xu Han, Yue Zhou, Kun Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks[J]. Photonics Research, 2019, 7(3): 368
    Download Citation