• Photonics Research
  • Vol. 6, Issue 7, 686 (2018)
Shiqi Tao1, Qingzhong Huang1、2、*, Liangqiu Zhu1, Jun Liu1, Yinglu Zhang1, Ying Huang1, Yi Wang1, and Jinsong Xia1、3、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2e-mail: huangqz@mail.hust.edu.cn
  • 3e-mail: jsxia@hust.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000686 Cite this Article Set citation alerts
    Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686 Copy Citation Text show less
    References

    [1] L. Pavesi, D. J. Lockwood. Silicon Photonics(2004).

    [2] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [3] L. Thyleén, L. Wosinski. Integrated photonics in the 21st century. Photon. Res., 2, 75-81(2014).

    [4] Q. Huang, X. Zhang, J. Xia, J. Yu. Dual-band optical filter based on a single microdisk resonator. Opt. Lett., 36, 4494-4496(2011).

    [5] Q. Huang, Q. Liu, J. Xia. Traveling wave-like Fabry–Perot resonator-based add-drop filters. Opt. Lett., 42, 5158-5161(2017).

    [6] S. Chen, Y. Shi, S. He, D. Dai. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt. Express, 23, 12840-12849(2015).

    [7] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited]. Photon. Res., 3, B10-B27(2015).

    [8] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34, 149-154(1967).

    [9] Q. Deng, X. Li, Z. Zhou, H. Yi. Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators. Photon. Res., 2, 71-74(2014).

    [10] Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, J. Xia. Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide. Opt. Express, 24, 20542-20553(2016).

    [11] S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, M. Lipson. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Opt. Lett., 33, 2185-2187(2008).

    [12] H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, J. Van Campenhout. Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide. IEEE Photon. Technol. Lett., 25, 159-162(2013).

    [13] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [14] L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen. CMOS-compatible temperature-independent tunable silicon optical lattice filters. Opt. Express, 21, 9447-9456(2013).

    [15] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 17, 14627-14633(2009).

    [16] B. Guha, J. Cardenas, M. Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 21, 26557-26563(2013).

    [17] M. Uenuma, T. Moooka. Temperature-independent silicon waveguide optical filter. Opt. Lett., 34, 599-601(2009).

    [18] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems [invited]. Photon. Res., 3, B28-B46(2015).

    [19] B. Guha, A. Gondarenko, M. Lipson. Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers. Opt. Express, 18, 1879-1887(2010).

    [20] Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, Z. Zhou. Athermal and flat-topped silicon Mach–Zehnder filters. Opt. Express, 24, 29577-29582(2016).

    [21] T. Hiraki, H. Fukuda, K. Yamada, T. Yamamoto. Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides. Front. Mater., 2, 1-5(2015).

    [22] S. Dwivedi, H. D’heer, W. Bogaerts. Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters. IEEE Photon. Technol. Lett., 27, 871-874(2015).

    [23] P. Xing, J. Viegas. Broadband CMOS-compatible SOI temperature insensitive Mach–Zehnder interferometer. Opt. Express, 23, 24098-24107(2015).

    [24] H. Yang, J. Zhang, Y. Zhu, X. Zhou, S. He, L. Liu. Ultra-compact and temperature-insensitive Mach–Zehnder interferometer based on one multimode waveguide on silicon. Opt. Lett., 42, 615-618(2017).

    [25] K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, B. B. Bakir. Toward athermal silicon-on-insulator (de)multiplexers in the O-band. Opt. Lett., 40, 2641-2644(2015).

    [26] A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, R. Baets. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 35, 639-649(2017).

    [27] A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, R. Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited]. Photon. Res., 3, B47-B59(2015).

    [28] A. Arbabi, L. L. Goddard. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 38, 3878-3881(2013).

    [29] D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, J. E. Bowers. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express, 19, 14130-14136(2011).

    [30] G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, J. Xia. Silicon nitride O-band (de) multiplexers with low thermal sensitivity. Opt. Express, 25, 12260-12267(2017).

    [31] X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, G. Q. Lo. Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. Opt. Express, 20, 2640-2648(2012).

    [32] Y. Huang, J. Song, X. Luo, T.-Y. Liow, G.-Q. Lo. CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Express, 22, 21859-21865(2014).

    [33] W. Sacher, Y. Huang, G. Lo, J. Poon. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol., 33, 901-910(2015).

    [34] N. Sherwood-Droz, M. Lipson. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express, 19, 17758-17765(2011).

    [35] Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, H. Chen. Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process. IEEE Photon. Technol. Lett., 27, 1543-1546(2015).

    [36] T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, F. Y. Gardes. Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared. Opt. Express, 25, 27310-27320(2017).

    [37] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652-11658(2013).

    [38] V. Raghunathan, T. Izuhara, J. Michel, L. C. Kimerling. Stability of polymer-dielectric bi-layers for athermal silicon photonics. Opt. Express, 20, 16059-16066(2012).

    [39] J.-M. Lee, M.-S. Kim, M. Fournier, P. Labeye, C. J. Oton, F. Testa. Postfabrication trimming of CMOS-compatible athermal MZI by thermal annealing. J. Lightwave Technol., 34, 1288-1292(2016).

    [40] J. Z. Huang, R. Scarmozzino, R. M. Osgood. A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers. IEEE Photon. Technol. Lett., 10, 1292-1294(1998).

    CLP Journals

    [1] Jun Liu, Qingzhong Huang, Shiqi Tao, Cheng Zeng, Jinsong Xia. Low-cost hybrid integrated 4 × 25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer[J]. Photonics Research, 2018, 6(11): 1067

    Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686
    Download Citation