• Photonics Research
  • Vol. 6, Issue 7, 686 (2018)
Shiqi Tao1, Qingzhong Huang1、2、*, Liangqiu Zhu1, Jun Liu1, Yinglu Zhang1, Ying Huang1, Yi Wang1, and Jinsong Xia1、3、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2e-mail: huangqz@mail.hust.edu.cn
  • 3e-mail: jsxia@hust.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000686 Cite this Article Set citation alerts
    Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686 Copy Citation Text show less
    Schematics of the athermal (a) MZI filter and (b) 4-channel MZI (de-)multiplexer.
    Fig. 1. Schematics of the athermal (a) MZI filter and (b) 4-channel MZI (de-)multiplexer.
    (a) Simulated effective index and TOC of the TE0 mode; inset: cross section of SiN waveguide. (b)–(d) Field profiles of the TE0 mode for W=0.44 μm, 1.2 μm, and 1.8 μm, respectively.
    Fig. 2. (a) Simulated effective index and TOC of the TE0 mode; inset: cross section of SiN waveguide. (b)–(d) Field profiles of the TE0 mode for W=0.44  μm, 1.2 μm, and 1.8 μm, respectively.
    (a) Optical microscope image of the athermal 4-channel (de-)multiplexer. SEM images of (b) a 2×2 MMI, (c) narrow waveguide and normal waveguide connected by a taper, (d) wide waveguide and normal waveguide connected by a taper, and (e) grating coupler for vertical coupling.
    Fig. 3. (a) Optical microscope image of the athermal 4-channel (de-)multiplexer. SEM images of (b) a 2×2 MMI, (c) narrow waveguide and normal waveguide connected by a taper, (d) wide waveguide and normal waveguide connected by a taper, and (e) grating coupler for vertical coupling.
    Transmission spectra of MZI filters at different temperatures for (a) L=410 μm, (b) L=430 μm, (c) L=450 μm, and (d) L=470 μm. (e) Wide transmission spectrum of the MZI filter with L=450 μm.
    Fig. 4. Transmission spectra of MZI filters at different temperatures for (a) L=410  μm, (b) L=430  μm, (c) L=450  μm, and (d) L=470  μm. (e) Wide transmission spectrum of the MZI filter with L=450  μm.
    (a) Thermal sensitivity as a function of L. (b) Thermal sensitivity as a function of wavelength.
    Fig. 5. (a) Thermal sensitivity as a function of L. (b) Thermal sensitivity as a function of wavelength.
    Measured normalized transmission spectra of (a) conventional MZI (de-)multiplexer and (b) athermal MZI (de-)multiplexer.
    Fig. 6. Measured normalized transmission spectra of (a) conventional MZI (de-)multiplexer and (b) athermal MZI (de-)multiplexer.
    Spectral shift with temperature for (a) Ch. 1, (b) Ch. 2, (c) Ch. 3, and (d) Ch. 4.
    Fig. 7. Spectral shift with temperature for (a) Ch. 1, (b) Ch. 2, (c) Ch. 3, and (d) Ch. 4.
     Ch. 1Ch. 2Ch. 3Ch. 4
    Center wavelength (nm)1293.61297.71301.91306.1
    Crosstalk at center (dB)−30−25−22−23
    1-dB bandwidth (nm)2.22.22.22.2
    Insertion loss (dB)5.55.25.55.5
    Channel spacing (nm)4.34.04.2
    Table 1. Room-Temperature Performance of the Athermal MZI (De-)Multiplexer
    Ref.MaterialDevicedλ/dT (pm/°C)IL (dB)ET/XT (dB)
    Dwivedi et al. [22]SiliconMZI filter<±15 (in 40 nm)0.3−25
    Yang et al. [24]SiliconMZI filter<±10 (in 30 nm)N.A.−30
    Xing et al. [23]SiliconMZI filter<±2.5 (in 60 nm)1−10
    Our deviceSiN (PECVD)MZI filter<±2.0 (in 55 nm)2.6−30
    Hassan et al. [25]SiliconMZI MUX 4<22 (all channels)4.3−15
    Gao et al. [30]SiN (LPCVD)MZI MUX 418.7 (central channel)1.8−20
    Bucio et al. [36]SiN (PECVD)AMMI MUX 310 (central channel)2.5−18
    Our deviceSiN (PECVD)MZI MUX 4<4.8 (all channels)5.5−22
    Table 2. Performance Comparison of the MZI Filters and (De-)Multiplexers with Low Thermal Sensitivity (MUX, multiplexer; IL, insertion loss; ET, extinction ratio for MZI filter; XT, crosstalk for MUX)
    Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 686
    Download Citation