• Laser & Optoelectronics Progress
  • Vol. 56, Issue 19, 190003 (2019)
Chao Wei, Yuping Ma*, Yuan Han, Yao Zhang, and Xuehui Chen
Author Affiliations
  • School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/LOP56.190003 Cite this Article Set citation alerts
    Chao Wei, Yuping Ma, Yuan Han, Yao Zhang, Xuehui Chen. Femtosecond Laser Processing of Ultrahard Materials[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190003 Copy Citation Text show less
    References

    [1] Li S L, Huang Z P, Ye Y K et al. Femtosecond laser inscribed cladding waveguide lasers in Nd∶LiYF4 crystals[J]. Optics & Laser Technology, 102, 247-253(2018).

    [2] Chen Y Q, Gao B P, Lin Y Z et al. Metal wire grid terahertz polarizer fabricated by femtosecond laser micro-machining[J]. Chinese Journal of Lasers, 45, 0802005(2018).

    [3] Xu H L, Sun H B. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities[J]. Science China Physics, Mechanics & Astronomy, 58, 114202(2015).

    [4] Balbus G H, Echlin M P, Grigorian C M et al. Femtosecond laser rejuvenation of nanocrystalline metals[J]. Acta Materialia, 156, 183-195(2018).

    [5] Zhang R, Huang C Z, Wang J et al. Micromachining of 4H-SiC using femtosecond laser[J]. Ceramics International, 44, 17775-17783(2018).

    [6] Kawashima T, Sano T, Hirose A et al. Femtosecond laser peening of friction stir welded 7075-T73 aluminum alloys[J]. Journal of Materials Processing Technology, 262, 111-122(2018).

    [7] Zhang X Q, Xing S L, Liu L et al. Trepanning of supper-alloy with thermal barrier coating using femtosecond laser[J]. Chinese Journal of Lasers, 44, 0102013(2017).

    [8] Ding T, Wang X H, Wang G D et al. Welding of fused silica by using high repetition frequency femtosecond laser[J]. Chinese Journal of Lasers, 45, 0701007(2018).

    [9] Wang M L, Yang L J, Zhang S et al. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser[J]. Optics & Laser Technology, 101, 284-290(2018).

    [10] Ostendorf A, Korte F, Kamlage G et al. 3D laser microfabrication: principles and applications[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA(2006).

    [11] Hu W J, Xu B, Shi Y et al. Flow sensor with high sensitivity fabricated by femtosecond laser[J]. Chinese Journal of Lasers, 45, 0902001(2018).

    [12] Long J, Xiong W, Liu Y et al. 3D assembly of aligned carbon nanotubes via femtosecond laser direct writing[J]. Chinese Journal of Lasers, 44, 0102003(2017).

    [13] Sato Y, Tsukamoto M, Shinonaga T et al. Femtosecond laser-induced periodic nanostructure creation on PET surface for controlling of cell spreading[J]. Applied Physics A, 122, 184-186(2016).

    [14] Baumgart J, Humbert L, Boulais É et al. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells[J]. Biomaterials, 33, 2345-2350(2012).

    [15] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [16] Gamaly E G, Rode A V, Luther-Davies B et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 9, 949-957(2002).

    [17] Bonse J, Krüger J. Probing the heat affected zone by chemical modifications in femtosecond pulse laser ablation of titanium nitride films in air[J]. Journal of Applied Physics, 107, 054902(2010).

    [18] Riedel R, Wiehl L, Zerr A et al. Superhard materials[M]. ∥ Dronskowski R, Kikkawa S, Stein A. Handbook of solid state chemistry. Weinhein: Wiley-VCH Verlag GmbH & Co. KGaA, 175-200(2017).

    [19] Phaal C. Surface studies of diamond[J]. Industrial Diamond Review, 486-489(1965).

    [20] Sawaoka A. Boron nitride: structural changes by shock compression and preparation of superhard compacts by very high pressure sintering[J]. American Ceramic Society Bulletin, 62, 1379-1383(1983).

    [21] Tan D Z, Sharafudeen K N, Yue Y Z et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications[J]. Progress in Materials Science, 76, 154-228(2016).

    [22] Sugioka K, Meunier M, Piqué A. Laser precision microfabrication[M]. Berlin: Springer(2010).

    [24] Konov V I. Laser in micro and nanoprocessing of diamond materials[J]. Laser & Photonics Reviews, 6, 739-766(2012).

    [25] Wu M T, Guo B, Zhao Q L et al. The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond[J]. Optics & Laser Technology, 106, 34-39(2018).

    [26] Liu N. Processing of back surface of Si wafers with a pulsed Nd∶YAG laser[J]. Journal of Laser Micro/ Nanoengineering, 11, 232-238(2016).

    [27] Li Z H, Fan J Q, Li P N et al. Effect of laser energy accumulation on surface periodic structures induced by femtosecond laser[J]. Chinese Journal of Lasers, 37, 68-73(2010).

    [28] Liang J C, Liu W D, Li Y et al. A model to predict the ablation width and calculate the ablation threshold of femtosecond laser[J]. Applied Surface Science, 456, 482-486(2018).

    [29] Nathala C S R, Ajami A, Husinsky W et al. . Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients[J]. Applied Physics A, 122, 107(2016).

    [30] Forster M, Huber C, Armbruster O et al. 50-nanometer femtosecond pulse laser induced periodic surface structures on nitrogen-doped diamond[J]. Diamond and Related Materials, 74, 114-118(2017).

    [31] Kononenko V V, Kononenko T V, Pimenov S M et al. Effect of the pulse duration on graphitisation of diamond during laser ablation[J]. Quantum Electronics, 35, 252-256(2005).

    [32] Dong Z W, Zhang W B, Zheng L W et al. Processing of diamond applying femtosecond and nanosecond laser pulses[J]. Infrared and Laser Engineering, 44, 893-896(2015).

    [33] Wu B Y, Deng L M, Liu P et al. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel[J]. Applied Surface Science, 409, 403-412(2017).

    [34] Park C, Farson D F. Precise machining of disk shapes from thick metal substrates by femtosecond laser ablation[J]. The International Journal of Advanced Manufacturing Technology, 83, 2049-2056(2016).

    [35] Ye D F, Liu J. Nonperturbative phenomena of atoms and molecules irradiated by ultra-strong femtosecond laser pulses[J]. Physics, 38, 908-913(2009).

    [36] König K, Ostendorf A. Optically induced nanostructures: biomedical and technical applications[M]. Berlin, München, Boston: Walter de Gruyter GmbH, 50-51(2015).

    [37] Wang J, Wang C H, Liu Y S et al. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser[J]. Applied Surface Science, 340, 49-55(2015).

    [38] Liu X, Du D, Mourou G. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE Journal of Quantum Electronics, 33, 1706-1716(1997).

    [39] Hirano M, Kawamura K I[J]. Hosono H. Encoding of holographic grating, periodic nano-structure by femtosecond laser pulse. Applied Surface Science, 197/198, 688-698(2002).

    [40] Wulz T, Canfield B K, Davis L M et al. Pulsed femtosecond-laser machining and deep reactive ion etching of diamond[J]. Diamond and Related Materials, 74, 108-113(2017).

    [41] Liang D Z, Wang M, Du C L et al. Research on microchannel of silica glass fabricated by laser-induced backside wet etching[J]. Laser Technology, 41, 174-177(2017).

    [42] Qin[\s]{1}SJ,[\s]{1}Li[\s]{1}W[\s]{1}J.[\s]{1}Process[\s]{1}characterization[\s]{1}of[\s]{1}fabricating[\s]{1}3D[\s]{1}micro[\s]{1}channel[\s]{1}systems[\s]{1}by[\s]{1}laser-micromachining[J].[\s]{1}Sensors[\s]{1}and[\s]{1}Actuators[\s]{1}A:Physical,[\s]{1}2002,[\s]{1}97/98:[\s]{1}749-[\s]{1}757.[\s]{1}

    [43] Chen L, Zhang P, Chen J X et al. Influence of processing parameters on the structure size of microchannel processed by femtosecond laser[J]. Optics & Laser Technology, 106, 47-51(2018).

    [44] Zhao Q L, Jiang T, Dong Z W et al. Ablation threshold and material removal mechanisms of SiC processed by femtosecond laser[J]. Journal of Mechanical Engineering, 46, 172-177(2010).

    [45] Zhang P, Chen L, Chen J X et al. Material removal effect of microchannel processing by femtosecond laser[J]. Optics and Lasers in Engineering, 98, 69-75(2017).

    [46] Ogawa Y, Ota M, Nakamoto K et al. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools[J]. CIRP Annals, 65, 245-248(2016).

    [47] Chen J Y, Jin T Y, Tian Y J. Development of an ultrahard nanotwinned CBN micro tool for cutting hardened steel[J]. Science China Technological Sciences, 59, 876-881(2016).

    [48] Yin J, Chen G Y, Xiong B et al. Femtosecond pulsed laser fabrication of a novel SCD grinding tool with positive rake angle[J]. Applied Physics A, 124, 859(2018).

    [49] Xiong B, Chen G Y, Yin J et al. Experimental research on conical array of single crystal diamond based on femtosecond laser[J]. Applied Laser, 38, 270-277(2018).

    [50] Huang J H, Liang G W, Li J et al. Femtosecond laser processing of polycrystalline diamond micro-structure array[J]. Chinese Journal of Lasers, 44, 0302007(2017).

    [51] Li G, Feng G Y, Wang S T et al. Femtosecond laser assisted fabrication of networked semi-occlusive microfluidic channel on fused silica glass surface[J]. Optik, 140, 953-958(2017).

    [52] Wang F, Shan C, Yan J P et al. Application of femtosecond laser technique in single crystal diamond film separation[J]. Diamond and Related Materials, 63, 69-74(2016).

    [53] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).

    [54] Jiang J, Liu J Q, Xu Y et al. Laser direct writing technique of diffraction optical element on curved-surface substrate[J]. Chinese Journal of Lasers, 44, 0602002(2017).

    [55] Hoppius[\s]{1}JS,[\s]{1}MaragkakiS,[\s]{1}KanitzA,[\s]{1}et[\s]{1}al.[\s]{1}Optimization[\s]{1}of[\s]{1}femtosecond[\s]{1}laser[\s]{1}processing[\s]{1}in[\s]{1}liquids[J].[\s]{1}Applied[\s]{1}Surface[\s]{1}Science,[\s]{1}2019,[\s]{1}467/468:[\s]{1}255-[\s]{1}260.[\s]{1}

    [56] Jia X, Dong L L. Fabrication of complex micro/nanopatterns on semiconductors by the multi-beam interference of femtosecond laser[J]. Physics Procedia, 56, 1059-1065(2014).

    [57] Simmonds R D, Salter P S, Jesacher A et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system[J]. Optics Express, 19, 24122-24128(2011).

    [58] Murphy S A, Booth M, Li L et al. Laser processing in 3D diamond detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 845, 136-138(2017).

    [59] Mathis A, Courvoisier F, Froehly L et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams[J]. Applied Physics Letters, 101, 071110(2012).

    [60] Rao S L, Wu P C, Zhang C C et al. Energy-controllable femtosecond laser fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 44, 0102008(2017).

    [61] Wu P C, Zhang C C, Yang L et al. Femtosecond laser dual-mode rapid fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 45, 1001005(2018).

    [62] O'Keeffe K. Robinson T, Hooker S M. Generation and control of chirped, ultrafast pulse trains[J]. Journal of Optics, 12, 015201(2010).

    [63] Mills B, Feinaeugle M, Sones L et al. Sub-micron-scale femtosecond laser ablation using a digital micromirror device[J]. Journal of Micromechanics and Microengineering, 23, 035005(2013).

    [64] Mills B, Heath D J, Feinaeugle M et al. Laser ablation via programmable image projection for submicron dimension machining in diamond[J]. Journal of Laser Applications, 26, 041501(2014).

    [65] Aharonovich I, Greentree A D, Prawer S. Diamond photonics[J]. Nature Photonics, 5, 397-405(2011).

    [66] Kononenko T V, Komlenok M S, Pashinin V P et al. Femtosecond laser microstructuring in the bulk of diamond[J]. Diamond and Related Materials, 18, 196-199(2009).

    [67] Takayama N, Yan J W. Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser[J]. Journal of Materials Processing Technology, 243, 299-311(2017).

    [68] Qiao L L, Chu W, Wang Z et al. Three-dimensional microfabrication by shaped femtosecond laser pulses[J]. Acta Optica Sinica, 39, 0126012(2019).

    [69] Polikarpov M, Snigireva I, Morse J et al. Large-acceptance diamond planar refractive lenses manufactured by laser cutting[J]. Journal of Synchrotron Radiation, 22, 23-28(2015).

    [70] Kononenko T V, Ralchenko V G, Ashkinazi E E et al. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing[J]. Applied Physics A, 122, 152(2016).

    [71] Xu S Z, Song W L, Zu X T. Study of graphite line micromachining on diamond surface by femtosecond laser direct writing[J]. Research and Exploration in Laboratory, 35, 52-54(2016).

    [72] Robertson J. Amorphous carbon[J]. Advances in Physics, 35, 317-374(1986).

    [73] Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering: R: Reports, 37, 129-281(2002).

    [74] Milne W I. Electronic devices from diamond-like carbon[J]. Semiconductor Science and Technology, 18, S81-S85(2003).

    [75] Yasumaru N, Miyazaki K, Kiuchi J. Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC[J]. Applied Physics A: Materials Science & Processing, 76, 983-985(2003).

    [76] Yasumaru N, Miyazaki K, Kiuchi J. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring[J]. Applied Surface Science, 254, 2364-2368(2008).

    [77] Pimenov S M, Jaeggi B, Neuenschwander B et al. Femtosecond laser surface texturing of diamond-like nanocomposite films to improve tribological properties in lubricated sliding[J]. Diamond and Related Materials, 93, 42-49(2019).

    [78] Zavedeev E V, Zilova O S, Barinov A D et al. Femtosecond laser microstructuring of diamond-like nanocomposite films[J]. Diamond and Related Materials, 74, 45-52(2017).

    [79] Nikaido S, Natori T, Saito R et al. Nanostructure formation on diamond-like carbon films induced with few-cycle laser pulses at low fluence from a Ti∶sapphire laser oscillator[J]. Nanomaterials, 8, 535(2018).

    [80] Tian Y J, Xu B, Yu D L et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 493, 385-388(2013).

    [81] Revel P, Jouini N, Thoquenne G et al. High precision hard turning of AISI 52100 bearing steel[J]. Precision Engineering, 43, 24-33(2016).

    [82] Jin T Y, Chen J Y, Wang J H et al. Material removal mechanism of nanotwinned cubic boron nitride by femtosecond laser ablation[J]. Journal of Mechanical Engineering, 55, 198-205(2019).

    [83] Voevodin A A, Zabinski J S. Supertough wear-resistant coatings with ‘chameleon’ surface adaptation[J]. Thin Solid Films, 370, 223-231(2000).

    [84] Voevodin A A, Fitz T A, Hu J J et al. Nanocomposite tribological coatings with “chameleon” surface adaptation[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 20, 1434-1444(2002).

    [85] Voevodin A A, Shtansky D V, Levashov E A et al. Nanostructured thin films and nanodispersion strengthened coatings[M]. Dordrecht: Springer, 1-8(2004).

    [86] Sugihara T, Enomoto T. Development of a cutting tool with a nano/micro-textured surface: improvement of anti-adhesive effect by considering the texture patterns[J]. Precision Engineering, 33, 425-429(2009).

    [87] Sugihara T, Enomoto T. Improving anti-adhesion in aluminum alloy cutting by micro stripe texture[J]. Precision Engineering, 36, 229-237(2012).

    [88] Sugihara T, Enomoto T. Crater and flank wear resistance of cutting tools having micro textured surfaces[J]. Precision Engineering, 37, 888-896(2013).

    [89] Sugihara T, Tanaka H, Enomoto T. Development of novel CBN cutting tool for high speed machining of inconel 718 focusing on coolant behaviors[J]. Procedia Manufacturing, 10, 436-442(2017).

    [90] Voevodin A A, Zabinski J S. Laser surface texturing for adaptive solid lubrication[J]. Wear, 261, 1285-1292(2006).

    [91] Basnyat P, Luster B, Muratore C et al. Surface texturing for adaptive solid lubrication[J]. Surface and Coatings Technology, 203, 73-79(2008).

    [92] Yang Q B, Xiao C G, Chen Z P et al. Surface wettability of laser-induced Al2O3 ceramic tools[J]. Laser & Optoelectronics Progress, 54, 101401(2017).

    [93] Yang Q B, Chen Z P, Yang T et al. Surface wettability of different micro-textured YG6 processed by femtosecond lasers[J]. Laser & Optoelectronics Progress, 55, 091404(2018).

    [94] Shaw M C, Cookson J O[M]. Metal cutting principles(2005).

    [95] Kim J, Je T J, Cho S H et al. Micro-cutting with diamond tool micro-patterned by femtosecond laser[J]. International Journal of Precision Engineering and Manufacturing, 15, 1081-1085(2014).

    Chao Wei, Yuping Ma, Yuan Han, Yao Zhang, Xuehui Chen. Femtosecond Laser Processing of Ultrahard Materials[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190003
    Download Citation