• Photonics Research
  • Vol. 12, Issue 12, 2891 (2024)
Ruoyu Shen1,2,†, Fangchen Hu2,†, Bingzhou Hong2,4, Xin Wang1,2..., Aolong Sun1, Junwen Zhang1, Haibing Zhao1, Nan Chi1, Wei Chu2,*, Haiwen Cai2,3,5 and Weiping Huang2|Show fewer author(s)
Author Affiliations
  • 1School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2Zhangjiang Laboratory, Shanghai 201210, China
  • 3Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4e-mail: hongbz@zjlab.ac.cn
  • 5e-mail: hwcai@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.537354 Cite this Article Set citation alerts
    Ruoyu Shen, Fangchen Hu, Bingzhou Hong, Xin Wang, Aolong Sun, Junwen Zhang, Haibing Zhao, Nan Chi, Wei Chu, Haiwen Cai, Weiping Huang, "100 nm broadband and ultra-compact multi-dimensional multiplexed photonic integrated circuit for high-capacity optical interconnects," Photonics Res. 12, 2891 (2024) Copy Citation Text show less
    References

    [1] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [2] A. Shacham, K. Bergman, L. P. Carloni. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput., 57, 1246-1260(2008).

    [3] N. Zhao, X. Li, G. Li. Capacity limits of spatially multiplexed free-space communication. Nat. Photonics, 9, 822-826(2015).

    [4] K. Okamoto. Wavelength-division-multiplexing devices in thin SOI: advances and prospects. IEEE J. Sel. Top. Quantum Electron., 20, 248-257(2014).

    [5] C. Sun, M. T. Wade, Y. Lee. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [6] H. Wang, J. Ai, Z. Ma. Finding the superior mode basis for mode-division multiplexing: a comparison of spatial modes in air-core fiber. Adv. Photon., 5, 056003(2023).

    [7] A. E. Willner, H. Zhou. Efficiently adding mode multiplexing for cost-effective, high-capacity fiber links. Adv. Photon., 6, 010502(2024).

    [8] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [9] R. G. H. van Uden, R. A. Correa, E. A. Lopez. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [10] B. Stern, X. Zhu, C. P. Chen. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).

    [11] Y. Hsu, C. Y. Chuang, X. Wu. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photon. Technol. Lett., 30, 1052-1055(2018).

    [12] X. Wu, C. Huang, K. Xu. Mode-division multiplexing for silicon photonic network-on-chip. J. Lightwave Technol., 35, 3223-3228(2017).

    [13] L. W. Luo, N. Ophir, C. P. Chen. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).

    [14] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).

    [15] G. Chen, Y. Yu, X. Zhang. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection. Opt. Lett., 41, 3543-3546(2016).

    [16] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2019).

    [17] Y. Liu, K. Xu, S. Wang. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).

    [18] W. Zhang, H. Ghorbani, T. Shao. On-chip 4×10 GBaud/s mode-division multiplexed PAM-4 signal transmission. IEEE J. Sel. Top. Quantum Electron., 26, 8302308(2020).

    [19] Y. Liu, Z. Wang, Y. Liu. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations. J. Lightwave Technol., 39, 5925-5932(2021).

    [20] Y. Su, Y. He, H. Chen. Perspective on mode-division multiplexing. Appl. Phys. Lett., 118, 200502(2021).

    [21] J. Xiang, Z. Tao, X. Li. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. Light: Sci. Appl., 11, 168(2022).

    [22] M. Xu, Y. Zhu, F. Pittalà. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [23] K. Y. Yang, C. Shirpurkar, A. D. White. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun., 13, 7862(2022).

    [24] X. Han, Y. Jiang, A. Frigg. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photon. Rev., 16, 2100529(2022).

    [25] T. Uematsu, Y. Ishizaka, Y. Kawaguchi. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 30, 2421-2426(2012).

    [26] L. Han, S. Liang, H. Zhu. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett., 40, 518-521(2015).

    [27] Z. Wang, C. Yao, Y. Zhang. Compact silicon three-mode multiplexer by refractive-index manipulation on a multi-mode interferometer. Opt. Express, 29, 13899-13907(2021).

    [28] Z. L. Hussain, R. S. Fyath. Design and simulation of 4-mode (de)multiplexers implemented in conventional and subwavelength grating Si/SiO2 platforms. Optik, 251, 168449(2022).

    [29] W. Chen, P. Wang, J. Yang. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express, 21, 25113-25119(2013).

    [30] W. Chen, P. Wang, T. Yang. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett., 41, 2851-2854(2016).

    [31] Y. Zhao, X. Guo, Y. Zhang. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett., 45, 3797-3800(2020).

    [32] X. Guo, Y. Liu, J. Du. Scalable and compact silicon mode multiplexer via tilt waveguide junctions with shallow etched slots. J. Lightwave Technol., 40, 4682-4688(2022).

    [33] D. Dai, L. Liu, S. Gao. Polarization management for silicon photonic integrated circuits. Laser Photon. Rev., 7, 303-328(2013).

    [34] J. Wang, S. He, D. Dai. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photon. Rev., 8, L18-L22(2014).

    [35] Y. Sun, Y. Xiong, W. N. Ye. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt. Lett., 41, 3743-3746(2016).

    [36] D. Dai, C. Li, S. Wang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).

    [37] Q. Huang, Y. Wu, W. Jin. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol., 36, 2903-2911(2018).

    [38] H. Shu, B. Shen, Q. Deng. A design guideline for mode (de)multiplexer based on integrated tapered asymmetric directional coupler. IEEE Photon. J., 11, 6603112(2019).

    [39] Q. Wang, Y. He, H. Wang. On-chip mode division (de)multiplexer for multi-band operation. Opt. Express, 30, 22779-22787(2022).

    [40] S. Mao, L. Cheng, C. Zhao. Compact hybrid five-mode multiplexer based on asymmetric directional couplers with constant bus waveguide width. Opt. Lett., 48, 2607-2610(2023).

    [41] W. Jiang, L. Xie, L. Zhang. Design and experimental demonstration of a silicon five-mode (de)multiplexer based on multi-phase matching condition. Opt. Express, 31, 33343-33354(2023).

    [42] W. Jiang, J. Hu, S. Mao. Broadband silicon four-mode (de)multiplexer using subwavelength grating-assisted triple-waveguide couplers. J. Lightwave Technol., 39, 5042-5047(2021).

    [43] Y. He, Y. Zhang, H. Wang. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing. Opt. Lett., 45, 2846-2849(2020).

    [44] X. Wang, H. Yu, Q. Zhang. Ultra-compact silicon mode (de)multiplexer based on directional couplers with subwavelength sidewall corrugations. Opt. Lett., 47, 2198-2201(2022).

    [45] H. Zhou, Y. Wang, X. Gao. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system. Laser Photon. Rev., 16, 2100521(2022).

    [46] W. Chang, L. Lu, X. Ren. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 26, 8162-8170(2018).

    [47] L. F. Frellsen, Y. Ding, O. Sigmund. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [48] R. Shen, B. Hong, X. Ren. Recent progress on inverse design for integrated photonic devices: methodology and applications. J. Nanophoton., 18, 010901(2024).

    [49] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [50] L. Su, D. Vercruysse, J. Skarda. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020).

    [51] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).

    [52] O. Sigmund. Morphology-based black and white filters for topology optimization. Struct. Multidisc. Optim., 33, 401-424(2007).

    [53] R. A. Gottscho, C. W. Jurgensen, D. J. Vitkavage. Microscopic uniformity in plasma etching. J. Vac. Sci. Technol. B, 10, 2133-2147(1992).

    [54] Y. Pan, R. E. Christiansen, J. Michon. Topology optimization of surface-enhanced Raman scattering substrates. Appl. Phys. Lett., 119, 061601(2021).

    [55] Y. Yuan, Y. Peng, W. V. Sorin. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2024).

    Ruoyu Shen, Fangchen Hu, Bingzhou Hong, Xin Wang, Aolong Sun, Junwen Zhang, Haibing Zhao, Nan Chi, Wei Chu, Haiwen Cai, Weiping Huang, "100 nm broadband and ultra-compact multi-dimensional multiplexed photonic integrated circuit for high-capacity optical interconnects," Photonics Res. 12, 2891 (2024)
    Download Citation