• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 2, 1850003 (2018)
Tao Yu1, Shangbin Chen2, Jingying Pan3, Conglin Su3, and Jun He3、*
Author Affiliations
  • 1Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
  • 2Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics — Huazhong University of Science and Technology, Wuhan, P. R. China
  • 3Division of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
  • show less
    DOI: 10.1142/s1793545818500037 Cite this Article
    Tao Yu, Shangbin Chen, Jingying Pan, Conglin Su, Jun He. Optical investigations reveal the effects of 2-aminoethyldiphenyl borate on STIM1 puncta formation[J]. Journal of Innovative Optical Health Sciences, 2018, 11(2): 1850003 Copy Citation Text show less
    References

    [1] Y. Baba, T. Kurosaki, “Physiological function and molecular basis of STIM1-mediated calcium entry in immune cells,” Immunol. Rev. 231(1), 174–188 (2009).

    [2] P. G. Hogan, R. S. Lewis, A. Rao, “Molecular basis of calcium signaling in lymphocytes: STIM and ORAI,” Annu. Rev. Immunol. 28, 491–533 (2010).

    [3] A. B. Parekh, J. W. Putney Jr, “Store-operated calcium channels,” Physiol. Rev. 85(2), 757–810 (2005).

    [4] J. W. Putney Jr , “A model for receptor-regulated calcium entry,” Cell Calcium 7(1), 1–12 (1986).

    [5] J. T. Smyth, W. I. Dehaven, B. F. Jones, J. C. Mercer, M. Trebak, G. Vazquez, J. W. Putney Jr, “Emerging perspectives in store-operated Ca2+ entry: Roles of Orai, Stim and TRP,” Biochim. Biophys. Acta 1763(11), 1147–1160 (2006).

    [6] J. Liou, M. Fivaz, T. Inoue, T. Meyer, “Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion,” Proc. Natl Acad. Sci. USA 104(22), 9301–9306 (2007).

    [7] J. Liou, M. L. Kim, W. D. Heo, J. T. Jones, J. W. Myers, J. E. Ferrell Jr, T. Meyer, “STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx,” Curr. Biol. 15(13), 1235–1241 (2005).

    [8] R. M. Luik, B. Wang, M. Prakriya, M. M. Wu, R. S. Lewis, “Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation,” Nature 454(7203), 538–542 (2008).

    [9] R. M. Luik, M. M. Wu, J. Buchanan, R. S. Lewis, “The elementary unit of store-operated Ca2+ entry: Local activation of CRAC channels by STIM1 at ER-plasma membrane junctions,” J. Cell Biol. 174(6), 815–825 (2006).

    [10] J. Roos, P. J. DiGregorio, A. V. Yeromin, K. Ohlsen, M. Lioudyno, S. Zhang, O. Safrina, J. A. Kozak, S. L. Wagner, M. D. Cahalan, G. Velicelebi, K. A. Stauderman, “STIM1, an essential and conserved component of store-operated Ca2+ channel function,” J. Cell Biol. 169(3), 435–445 (2005).

    [11] S. L. Zhang, Y. Yu, J. Roos, J. A. Kozak, T. J. Deerinck, M. H. Ellisman, K. A. Stauderman, M. D. Cahalan, “STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane,” Nature 437(7060), 902–905 (2005).

    [12] M. Prakriya, S. Feske, Y. Gwack, S. Srikanth, A. Rao, P. G. Hogan, “Orai1 is an essential pore subunit of the CRAC channel,” Nature 443(7108), 230–233 (2006).

    [13] M. Vig, W. I. DeHaven, G. S. Bird, J. M. Billingsley, H. Wang, P. E. Rao, A. B. Hutchings, M. H. Jouvin, J. W. Putney, J. P. Kinet, “Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels,” Nat. Immunol. 9(1), 89–96 (2008).

    [14] A. V. Yeromin, S. L. Zhang, W. Jiang, Y. Yu, O. Safrina, M. D. Cahalan, “Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai,” Nature 443(7108), 226–229 (2006).

    [15] M. Muik, M. Fahrner, I. Derler, R. Schindl, J. Bergsmann, I. Frischauf, K. Groschner, C. Romanin, “A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels,” J. Biol. Chem. 284(13), 8421–8426 (2009).

    [16] P. B. Stathopulos, G. Y. Li, M. J. Plevin, J. B. Ames, M. Ikura, “Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry,” J. Biol. Chem. 281(47), 35855–35862 (2006).

    [17] M. M. Wu, J. Buchanan, R. M. Luik, R. S. Lewis, “Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane,” J. Cell Biol. 174(6), 803–813 (2006).

    [18] P. Xu, J. Lu, Z. Li, X. Yu, L. Chen, T. Xu, “Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1,” Biochem. Biophys. Res. Commun. 350(4), 969–976 (2006).

    [19] G. N. Huang, W. Zeng, J. Y. Kim, J. P. Yuan, L. Han, S. Muallem, P. F. Worley, “STIM1 carboxylterminus activates native SOC, I(crac) and TRPC1 channels,” Nat. Cell Biol. 8(9), 1003–1010 (2006).

    [20] Z. Li, J. Lu, P. Xu, X. Xie, L. Chen, T. Xu, “Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation,” J. Biol. Chem. 282(40), 29448–29456 (2007).

    [21] C. Y. Park, P. J. Hoover, F. M. Mullins, P. Bachhawat, E. D. Covington, S. Raunser, T. Walz, K. C. Garcia, R. E. Dolmetsch, R. S. Lewis, “STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1,” Cell 136(5), 876–890 (2009).

    [22] J. Soboloff, B. S. Rothberg, M. Madesh, D. L. Gill, “STIM proteins: Dynamic calcium signal transducers,” Nat. Rev. Mol. Cell Biol. 13(9), 549–565 (2012).

    [23] S. Feske, M. Prakriya, “Conformational dynamics of STIM1 activation,” Nat. Struct. Mol. Biol. 20(8), 918–919 (2013).

    [24] Y. Zhou, P. Srinivasan, S. Razavi, S. Seymour, P. Meraner, A. Gudlur, P. B. Stathopulos, M. Ikura, A. Rao, P. G. Hogan, “Initial activation of STIM1, the regulator of store-operated calcium entry,” Nat. Struct. Mol. Biol. 20(8), 973–981 (2013).

    [25] S. Srikanth, H. J. Jung, K. D. Kim, P. Souda, J. Whitelegge, Y. Gwack, “A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells,” Nat. Cell Biol. 12(5), 436–446 (2010).

    [26] R. Palty, A. Raveh, I. Kaminsky, R. Meller, E. Reuveny, “SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling,” Cell 149(2), 425–438 (2012).

    [27] S. Srikanth, M. Jew, K. D. Kim, M. K. Yee, J. Abramson, Y. Gwack, “Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1),” Proc. Natl Acad. Sci. USA 109(22), 8682–8687 (2012).

    [28] T. Maruyama, T. Kanaji, S. Nakade, T. Kanno, K. Mikoshiba, “2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins (1,4,5)P3-induced Ca2+ release,” J. Biochem. 122 (3), 498–505 (1997).

    [29] M. D. Bootman, T. J. Collins, L. Mackenzie, H. L. Roderick, M. J. Berridge, C. M. Peppiatt, “2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release,” FASEB J. 16(10), 1145–1150 (2002).

    [30] W. I. DeHaven, J. T. Smyth, R. R. Boyles, G. S. Bird, J. W. Putney Jr, “Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry,” J. Biol. Chem. 283(28), 19265–19273 (2008).

    [31] H. T. Ma, K. Venkatachalam, J. B. Parys, D. L. Gill, “Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes,” J. Biol. Chem. 277(9), 6915–6922 (2002).

    [32] M. Prakriya, R. S. Lewis, “Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors,” J. Physiol. 536(Pt 1), 3–19 (2001).

    [33] C. Peinelt, A. Lis, A. Beck, A. Fleig, R. Penner, “2-APB directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels,” J. Physiol. 586(13), 3061–3073 (2008).

    [34] N. Scrimgeour, T. Litjens, L. Ma, G. J. Barritt, G. Y. Rychkov, “Properties of Orai1 mediated storeoperated current depend on the expression levels of STIM1 and Orai1 proteins,” J. Physiol. 587(Pt 12), 2903–2918 (2009).

    [35] R. T. Williams, P. V. Senior, L. Van Stekelenburg, J. E. Layton, P. J. Smith, M. A. Dziadek, “Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation,” Biochim. Biophys. Acta 1596(1), 131–137 (2002).

    [36] J. P. Yuan, W. Zeng, M. R. Dorwart, Y. J. Choi, P. F. Worley, S. Muallem, “SOAR and the polybasic STIM1 domains gate and regulate Orai channels,” Nat. Cell Biol. 11(3), 337–343 (2009).

    [37] B. Zeng, G. L. Chen, S. Z. Xu, “Store-independent pathways for cytosolic STIM1 clustering in the regulation of store-operated Ca(2+T influx,” Biochem. Pharmacol. 84(8), 1024–1035 (2012).

    [38] W. D. Heo, T. Inoue, W. S. Park, M. L. Kim, B. O. Park, T. J. Wandless, T. Meyer, “PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane,” Science 314(5804), 1458–1461 (2006).

    [39] M. Wei, Y. Zhou, A. Sun, G. Ma, L. He, L. Zhou, S. Zhang, J. Liu, S. L. Zhang, D. L. Gill, Y. Wang, “Molecular mechanisms underlying inhibition of STIM1-Orai1-mediated Ca2+ entry induced by 2-aminoethoxydiphenyl borate,” Pflugers Archiv. Eur. J. Physiol. 468(11–12), 2061–2074 (2016).

    [40] L. Navarro-Borelly, A. Somasundaram, M. Yamashita, D. Ren, R. J. Miller, M. Prakriya, “STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy,” J. Physiol. 586(Pt 22), 5383–5401 (2008).

    [41] Y. Wang, X. Deng, Y. Zhou, E. Hendron, S. Mancarella, M. F. Ritchie, X. D. Tang, Y. Baba, T. Kurosaki, Y. Mori, J. Soboloff, D. L. Gill, “STIM protein coupling in the activation of Orai channels,” Proc. Natl Acad. Sci. USA 106(18), 7391–7396 (2009).

    Tao Yu, Shangbin Chen, Jingying Pan, Conglin Su, Jun He. Optical investigations reveal the effects of 2-aminoethyldiphenyl borate on STIM1 puncta formation[J]. Journal of Innovative Optical Health Sciences, 2018, 11(2): 1850003
    Download Citation