• Journal of Inorganic Materials
  • Vol. 34, Issue 7, 685 (2019)
Hao-Geng LI1、2, Hong-Yu GU1, Yu-Zhi ZHANG1、2、*, Li-Xin SONG1、2、*, Ling-Nan WU1, Zhen-Yi QI1, and Tao ZHANG1
Author Affiliations
  • 1Key Laboratory of Inorganic Coatings Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20180515 Cite this Article
    Hao-Geng LI, Hong-Yu GU, Yu-Zhi ZHANG, Li-Xin SONG, Ling-Nan WU, Zhen-Yi QI, Tao ZHANG. Surface Protection of Polymer Materials from Atomic Oxygen: a Review[J]. Journal of Inorganic Materials, 2019, 34(7): 685 Copy Citation Text show less
    References

    [1] A DEVER J, K MILLER S, A SECHKAR E et al. Space environment exposure of polymer films on the materials international space station experiment: results from MISSE 1 and MISSE 2. High Perform. Polym, 20, 371-387(2008).

    [2] W ZHANG, M YI, G SHEN Z et al. Protection against atomic oxygen erosion of oxide coatings for spacecraft materials. Journal of Beijing University of Aeronautics and Astronautics, 39, 1074-1078(2013).

    [3] F LEI X. Functional Polyimide/silicon Films: Fabrication and Properties. Xi’an: Northwestern Polytechnical University PhD thesis(2016).

    [4] J LIAW D, L WANG K, C HUANG Y et al. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci, 37, 907-974(2012).

    [5] Q XIONG Y, P XIE S. Measurement methods of atomic oxygen concentration. Journal of Transducer Technology, 18, 8-12(1999).

    [6] M SEMONIN D, L BRUNSVOLD A, K MINTON T. Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacer. Rockets, 43, 421-425(2006).

    [7] M SONG M. Study on Erosion Effect of Atomic Oygen on Polyimide and Its Protective Technology in LEO Environment. Nanchang: Jiangxi Science and Technology Normal University Master Thesis(2012).

    [8] B WANG C. Study on the Degradation Behavior of Organic/Inorganic Protective Materials in Atomic Oxygen Environment. Changchun: Jilin University Master Thesis(2017).

    [9] M SILVERMAN E. NASA Contrator Report 4661, Part 1. Space Environmental Effects on Spacecraft: LEO Materials Selection Guide, part 1, N96-10860,. Virginia: NASA(1995).

    [10] C TIAN, F CHENG L, G LUAN X. Degradation behaviour of C/C composites by atomic oxygen irradiation. Journal of Inorganic Materials, 28, 853-858(2013).

    [11] Z HOOSHANGI, A H FEGHHI S, R SAEEDZADEH. The effects of low earth orbit atomic oxygen on the properties of polytetraflu- oroethylene. Acta Astronaut, 119, 233-240(2016).

    [12] K DE GROH K, A BANKS B. Atomic-oxygen undercutting of long duration exposure facility atomized-Kapton multilayer insulation. J. Spacer. Rockets, 31, 656-664(1994).

    [13] H SHIMAMURA, T NAKAMURA. Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym. Degrad. Stabil, 94, 1389-1396(2009).

    [14] K DE GROH K, A BANKS B, G MITCHELL G et al. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data, NASA/TM—2013-217847,Ohio: NASA. NASA STI Pprogram(2013).

    [15] A BANKS B, C DILL G, J LOFTUS R et al. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields with Those in Low Earth Orbit, NASA/TM—2013-216613,Ohio: NASA. NASA STI Program(2013).

    [16] A BANKS B, K MILLER S. Effects of Sample Holder Rdge Geometry on Atomic Oxygen Erosion Yield of Pyrolytic Graphite Exposed in Low Earth Orbit, NASA/TM—2018-219910,Ohio: NASA(2018).

    [17] L QING F, Z CAO W. Mechanical Property Improvement of Novel AO Resistance PI Thin Films and the synthesis of Wide Width Films. China Space Science Society Space Materials Specialized Committee 2009 Academic Exchange Proceedings(2009).

    [18] W JI H. Synthesis and Atomic Oxygen Erosion Resistance Property of PPO-containing Polyimide Films. Changchun: Jilin University Master Thesis(2014).

    [19] H WEI J, X GANG Z, Q MING L et al. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis [4-(3-aminophenoxy) phenyl] phenylphosphine oxide. Sci. SerB, 56, 788-798(2014).

    [20] F XIAO, K WANG, M ZHAN. Atomic oxygen erosion resistance of polyimide/ZrO2 hybrid films. Appl. Surf. Sci, 256, 7384-7388(2010).

    [21] M LÜ, Q WANG, T WANG et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Compos. Pt. B-Eng, 77, 215-222(2015).

    [22] G LI, L WANG, H NI et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym, 11, 123-154(2001).

    [23] K MINTON T, E WRIGHT M, J TOMCZAK S et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces, 4, 492-502(2012).

    [24] F LEI X, T QIAO M, D TIAN L et al. Improved space survivability of polyhedral oligomeric silsesquioxane (POSS) polyimides fabricated via novel POSS-diamine. Corros. Sci, 90, 223-238(2015).

    [25] X LI, A AL-OSTAZ, M JARADAT et al. Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur. Polym. J, 92, 233-249(2017).

    [26] J TOMCZAK S, D MARCHANT, S SVEIDA et al. Properties and improved space survivability of POSS (polyhedral oligomeric silsesquioxane) polyimides. MRS Online Proc. Libr, 851(2004).

    [27] L BRUNSVOLD A, K MINTON T, I GOUZMAN et al. An investigation of the resistance of polyhedral oligomeric silsesquioxane polyimide to atomic-oxygen attack. High Perform. Polym, 16, 303-318(2004).

    [28] R VERKER, E GROSSMAN, I GOUZMAN et al. POSS-polyimide nanocomposite films: simulated hypervelocity space debris and atomic oxygen effects. High Perform. Polym, 20, 475-491(2008).

    [29] R VERKER, E GROSSMAN, N ELIAZ. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: the role of mechanical properties at elevated temperatures. Acta Mater, 57, 1112-1119(2009).

    [30] G FANG, H LI, J LIU et al. Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels: synthesis and characterization. Chem. Lett, 44, 1083-1085(2015).

    [31] X LEI, M QIAO, L TIAN et al. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corros. Sci, 98, 560-572(2015).

    [32] Z LIU Y, Y SUN, L ZENG F et al. Characterization and analysis on atomic oxygen resistance of POSS/PVDF composites. Appl. Surf. Sci, 320, 908-913(2014).

    [33] F LEI X, Y CHEN, P ZHANG H et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater.Interfaces, 5, 10207-10220(2013).

    [34] W DUO S, M SONG M, Z LIU T et al. SiO2 Coatings Prepared by Sol-Gel Process Protecting Silver from Atomic Oxygen Erosion. Applied Mechanics and Materials. Switzerland: Trans Tech Publications, 3044-3047(2012).

    [35] B HEIMANN R, I KLEIMAN J, E LITOCSKY et al. High-pressure cold gas dynamic (CGD)-sprayed alumina-reinforced aluminum coatings for potential application as space construction material. Surf. Coat. Technol, 252, 113-119(2014).

    [36] I GOUZMAN, O GIRSHEVITZ, E GROSSMAN et al. Thin film oxide barrier layers: protection of Kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl. Mater.Interfaces, 2, 1835-1843(2010).

    [37] H QI, Y QIAN, J XU et al. Studies on atomic oxygen erosion resistance of deposited Mg-alloy coating on Kapton. Corros. Sci, 124, 56-62(2017).

    [38] H QI, Y QIAN, J XU et al. An AZ31 magnesium alloy coating for protecting polyimide from erosion-corrosion by atomic oxygen. Corros. Sci, 138, 170-177(2018).

    [39] S ERDOĞAN, S KÖYTEPE, T SECKIN et al. V2O5-polyimide hybrid material: synthesis, characterization, and sulfur removal properties in fuels. Clean Technol. Environ.Policy, 16, 619-628(2014).

    [40] L CHEN, L LIU, Y DU et al. Processing and characterization of ZnO nanowire-grown PBO fibers with simultaneously enhanced interfacial and atomic oxygen resistance properties. RSC Adv, 4, 59869-59876(2014).

    [41] K GOTLIB-VAINSTEIN, I GOUZMAN, O GIRSHEVITZ et al. Liquid phase deposition of a space-durable, antistatic SnO2 coating on Kapton. ACS Appl. Mater.Interfaces, 7, 3539-3546(2015).

    [42] Q OUYANG, W WANG, Q FU et al. Atomic oxygen irradiation resistance of transparent conductive oxide thin films. Thin Solid Films, 623, 31-39(2017).

    [43] Y HUANG, S LÜ, X TIAN et al. Interface analysis of inorganic films on polyimide with atomic oxygen exposure. Surf. Coat. Technol, 216, 121-126(2013).

    [44] W WANG, C LI, J ZHANG et al. Effects of atomic oxygen treatment on structures, morphologies and electrical properties of ZnO: Al films. Appl. Surf. Sci, 256, 4527-4532(2010).

    [45] R CHAVERZ, E IONESCU, C BALAN et al. Effect of ambient atmosphere on crosslinking of polysilazanes.. Appl. Polym. Sci, 119, 794-802(2011).

    [46] S LI, Y ZHANG. Effect of synthesis temperature on structure and ceramization process of polyaluminasilazanes. Chinese Journal of Inorganic Chemistry, 27, 943-950(2011).

    [47] C CHANG Y, Z LIU T, H ZHANG et al. Protection of Kapton from Atomic-oxygen Erosion Using a Polysilazane Coating. LIU H W, WANG G, ZHANG G W. Material Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology II. Switzerland: Trans. Tech. Publications, 651, 65-68(2014).

    [48] S DUO, C CHANG Y, T LIU et al. Atomic oxygen erosion resistance of polysiloxane/POSS hybrid coatings on Kapton. Phys.Procedia, 50, 337-342(2013).

    [49] I KLEIMAN J. Surface modification technologies for durable space polymers. MRS Bull, 35, 55-65(2010).

    [50] A ISKANDEROVA Z, I KLEIMAN J, Y GUDIMENKO et al. Surface Modification of Polymers and Carbon-based Materials by ion Implantation and Oxidative Conversion:U.S.(1997).

    [51] Y GUDIMENKO, I KLEIMAN J, R COOL G et al. Modification of Subsurface Region of Polymers and Carbon-based Materials:U.S.(1999).

    [52] Y GUDIMENKO, R NG, J KLEIMAN et al. Photosil™ Surface Modification Treatment of Polymer-based Space Materials and External Space Components. KLEIMAN J, ISKANDEROVA Z A. Protection of Materials and Structures from Space Environment. U.S. Kluwer Academic Publishers, 419-434(2004).

    [53] A ISKANDEROVA Z, I KLEIMAN J, Y GUDIMENKO et al. Research Aspects of Scaling-up Implantox Technology for Protection of Polymers in Space by Ion Implantation. Protection of Space Materials from the Space Environment. Dordrecht: Springer, 145-163(2001).

    [54] Y GU H. Surface Activation and Silanization of Polyimide. Shanghai: Shanghai Institute of Ceramics PhD Thesis(2015).

    [55] M SHU, Z LI, Y MAN et al. Surface modification of poly (4, 4°-oxydiphenylene pyromellitimide)(Kapton) by alkali solution and its applications to atomic oxygen protective coating. Corros. Sci, 112, 418-425(2016).

    [56] K LIU, H MU, M SHU et al. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf.A, 529, 356-362(2017).

    [57] D WANG, M GAO Z, H LI Z et al. Analysis of erosion effect of environmental factors on polyimide films and coatings. Surface Technology, 47, 123-128(2018).

    [58] A ISKANDEROVA Z, I KLEIMAN J, Y GUDIMENKO et al. Influence of content and structure of hydrocarbon polymers on erosion by atomic oxygen. J. Spacer.Rockets, 32, 878-884(1995).

    [59] Y XIE, Y GAO, X QIN et al. Preparation and properties of atomic oxygen protective films deposited on Kapton by solvothermal and Sol-Gel methods. Surf. Coat. Technol, 206, 4384-4388(2012).

    [60] A BANKS B, K DE GROH K, M AUER B et al. LDEF. Monte Carlo Modeling of Atomic Oxygen Attack of Polymers with Protective Coatings on LDEF. N93-28282,Ohio: NASA, 1137-1150(1993).

    [61] B WEAVER A, M KULAKHMETOY, A ALEXEENKO A. Consistent atomic oxygen model for firect dimulation monte carlo below 1000 kelvin. J. Thermophys.Heat Transfer, 689-694(2016).

    [62] Y LIU, G LI. Numerical simulation on atomic oxygen undercutting of Kapton film in low earth orbit. Acta Astronaut, 67, 388-395(2010).

    [63] Y HUANG, X TIAN, S LÜ et al. An undercutting model of atomic oxygen for multilayer silica/alumina films fabricated by plasma immersion implantation and deposition on polyimide. Appl. Surf. Sci, 257, 9158-9163(2011).

    [64] A BANKS B, K DE GROH K, A KNEUBEL C. Comparison of the Results of MISSE 6 Atomic Oxygen Erosion Yields of Layered Kapton H Films with Monte Carlo Computational Predictions, NASA/TM—2014-218411,Ohio: NASA. NASA STI Program(2014).

    [65] W DUO S, S LI M, M ZHANG Y. Erosion theoretical and predictive models of atomic oxygen for space materials in low earth orbit.

    [66] H LEE C, W CHEN L. Reactive probability of atomic oxygen with material surfaces in low earth orbit. J. Spacecr.Rockets, 37, 252-256(2000).

    [67] T LIU, Q SUN, J MENG et al. Degradation modeling of satellite thermal control coatings in a low earth orbit environment. Sol.Energy, 139, 467-474(2016).

    [68] L CHEN, Z LI, H LEE C et al. Unified model for low-earth- orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials. Aerosp. Sci. Technol, 53, 194-206(2016).

    [69] S DASGUPTA, F LORANT et al. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 105, 9396-9409(2001).

    [70] A RAHNAMOUN, C T VAN DUIN A. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the reaxff reactive force-field method. J. Phys. Chem. A, 118, 2780-2787(2014).

    [71] F RAHMANI, S NOURANIAN, X LI et al. Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Appl. Mater. Interfaces, 9, 12802-12811(2017).

    [72] F ZENG, C PENG, Y LIU et al. Reactive molecular dynamics simulations on the disintegration of PVDF, FP-POSS, and their composite during atomic oxygen impact. J. Phys. Chem. A, 119, 8359-8368(2015).

    [73] A GINDULYTE, L MASSA, A BANKS B et al. Degradation of Polymers by O (3 P) in Low Earth Orbit. Protection of Materials and Structures from Space Environment. Dordrecht: Springer, 299-306(2004).

    [74] H ZHANG, S REN, J PU et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation. Appl. Surf. Sci, 444, 28-35(2018).

    Hao-Geng LI, Hong-Yu GU, Yu-Zhi ZHANG, Li-Xin SONG, Ling-Nan WU, Zhen-Yi QI, Tao ZHANG. Surface Protection of Polymer Materials from Atomic Oxygen: a Review[J]. Journal of Inorganic Materials, 2019, 34(7): 685
    Download Citation