• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071607 (2020)
Feng Liu1、2, Fan Zhang1、2, Hao Bian1、2, Qing Yang1、3, Minjing Li1、3, and Feng Chen1、2、*
Author Affiliations
  • 1State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • 2Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;
  • 3School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • show less
    DOI: 10.3788/LOP57.071607 Cite this Article Set citation alerts
    Feng Liu, Fan Zhang, Hao Bian, Qing Yang, Minjing Li, Feng Chen. Development and Preparation of Refractive Infrared Microlens Array Device[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071607 Copy Citation Text show less
    References

    [1] Ting D Z, Soibel A, Khoshakhlagh A et al. Advances in III-V semiconductor infrared absorbers and detectors[J]. Infrared Physics & Technology, 97, 210-216(2019).

    [2] Rogalski A. Next decade in infrared detectors[J]. Proceedings of SPIE, 10433, 104330L(2017).

    [3] Tu X C, Xiao P, Kang L et al. Nb5N6 microbolometer for sensitive, fast-response, 2-μm detection[J]. Optics Express, 26, 15585-15593(2018).

    [4] Cha D H, Kim H J, Hwang Y et al. Fabrication of molded chalcogenide-glass lens for thermal imaging applications[J]. Applied Optics, 51, 5649-5656(2012).

    [5] Cha D H, Kim H J, Park H S et al. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications[J]. Applied Optics, 49, 1607-1613(2010).

    [6] Franks J. Molded, wafer level optics for long wave infrared applications[J]. Proceedings of SPIE, 9822, 98220B(2016).

    [7] Xie H B, Zhao M, Wang Y et al. Switchable FoV infrared imaging system using micro-lens arrays[J]. OSA Continuum, 2, 1925-1937(2019).

    [8] Xie D, Song Y, Song Y et al. Design of a micro uncooled infrared imaging system based on VOx IRFPA[J]. Proceedings of SPIE, 10025, 1002516(2016).

    [9] Bai J, Hu W D, Guo N et al. Performance optimization of InSb infrared focal-plane arrays with diffractive microlenses[J]. Journal of Electronic Materials, 43, 2795-2801(2014).

    [10] Maxtech International. Inc. Volume IRW-M: the world market for military infrared imaging detectors & systems Sarasota, FL, USA: Maxtech International[R]. Inc.(2019).

    [11] Wan S, Niu R, Ren H L et al. Experimental demonstration of dissipative sensing in a self-interference microring resonator[J]. Photonics Research, 6, 681-685(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1807040000703y6B8E

    [12] Wang Y, Wu K, Chen J. All-optical modulator based on MoS2-PVA thin film[J]. Chinese Optics Letters, 16, 020003(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180202000113rYux4A

    [13] Peng Z H, Jia C X, Zhang Y Q et al. Multipartite entanglement generation with dipole induced transparency effect in indirectly coupled dipole-microcavity systems[J]. Chinese Optics Letters, 16, 082702(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180801000032mSpVsY

    [14] Banerji S, Meem M, Majumder A et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 6, 805-810(2019).

    [15] Liu M Z, Fan Q B, Yu L et al. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces[J]. Optics Express, 27, 10738-10744(2019).

    [16] Dai Y M, Zhang Y Q, Xie Y P et al. Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry[J]. Photonics Research, 7, 1066-1074(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ56d9220e3c0724fb

    [17] Bai J, Wang C, Chen X H et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection[J]. Photonics Research, 7, 1051-1060(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ18111d1e425e9961

    [18] Cheng H J, Dong M, Tan Q W et al. Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium[J]. Chinese Optics Letters, 17, 122401(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJcd9304870fac6b72

    [19] Hu T, Dong B W, Luo X S et al. Silicon photonic platforms for mid-infrared applications[J]. Photonics Research, 5, 417-430(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170831000198eLhOkQ

    [20] Serna S, Lin H T, Alonso-Ramos C et al. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides[J]. Photonics Research, 6, B37-B42(2018).

    [21] Adam J L, Zhang X[M]. Chalcogenide glasses: Preparation, properties and applications(2014).

    [22] Gan F X. Structure, properties and applications of chalcohalide glasses: a review[J]. Journal of Non-Crystalline Solids, 140, 184-193(1992).

    [23] Xu H J, He Y J, Wang X S et al. Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications[J]. Infrared Physics & Technology, 65, 77-82(2014).

    [24] Kitamura R, Pilon L, Jonasz M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature[J]. Applied Optics, 46, 8118-8133(2007).

    [25] Thomas M E, Joseph R I, Tropf W J. Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency[J]. Applied Optics, 27, 239-245(1988).

    [26] Gavrushchuk E. Polycrystalline zinc selenide for IR optical applications[J]. Inorganic Materials, 39, 883-899(2003). http://link.springer.com/article/10.1023/A%3A1025529017192

    [27] Tsilingiris P T. Comparative evaluation of the infrared transmission of polymer films[J]. Energy Conversion and Management, 44, 2839-2856(2003).

    [28] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).

    [29] Cao X W, Lu Y M, Fan H et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concavemicrolens array[J]. Applied Optics, 57, 9604-9608(2018).

    [30] Cao X W, Chen Q D, Zhang L et al. Single-pulse writing of a concave microlens array[J]. Optics Letters, 43, 831-834(2018).

    [31] Liu F, Yang Q, Bian H et al. Artificial compound eye-tipped optical fiber for wide field illumination[J]. Optics Letters, 44, 5961-5964(2019).

    [32] Hou Z S, Cao J J, Li A W et al. Tunable protein microlens array[J]. Chinese Optics Letters, 17, 061702(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJe1b443ef058e591c

    [33] Zhang Z X, Chang J, Ren H X et al. Snapshot imaging spectrometer based on a microlens array[J]. Chinese Optics Letters, 17, 011101(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190115000110MiOlRo

    [34] Zhang F, Wang C, Yin K et al. Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching[J]. Scientific Reports, 8, 2419(2018).

    [35] Wei Y, Yang Q, Bian H et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems[J]. Applied Surface Science, 457, 1202-1207(2018).

    [36] Deng Z F, Chen F, Yang Q et al. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging[J]. Advanced Functional Materials, 26, 1995-2001(2016).

    [37] Bian H, Wei Y, Yang Q et al. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process[J]. Applied Physics Letters, 109, 221109(2016).

    [38] Brettin A, Abolmaali F, Limberopoulos N I et al. Towards fabrication of mid-IR FPAs with enhanced sensitivity and reduced dark current by using integration with microspherical arrays. [C]∥NAECON 2018-IEEE National Aerospace and Electronics Conference, July 23-26, 2018. Dayton, OH. New York: IEEE, 533-535(2018).

    [39] Mukaida M, Yan J W. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo[J]. International Journal of Machine Tools & Manufacture, 115, 2-14(2017).

    [40] Sun Z W, To S, Yu K M. One-step generation of hybrid micro-optics with high-frequency diffractive structures on infrared materials by ultra-precision side milling[J]. Optics Express, 26, 28161-28177(2018).

    [41] Zhang L, Zhou W C, Naples N J et al. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes[J]. Applied Optics, 57, 3598-3605(2018).

    [42] Liu X H, Zhou T F, Zhang L et al. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding[J]. Journal of Micromechanics and Microengineering, 28, 075008(2018).

    [43] Hahn C, Amyot-Bourgeois M, Al-Shehab M et al. Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off[J]. Nanotechnology, 30, 054003(2019).

    [44] Yan J H, Ou W, Ou Y et al. Design and fabrication of novel microlens-micromirrors array for infrared focal plane array[J]. Microwave and Optical Technology Letters, 54, 879-884(2012).

    [45] Kumaresan Y, Rammohan A, Dwivedi P K et al. Large area IR microlens arrays of chalcogenide glass photoresists by grayscale maskless lithography[J]. ACS Applied Materials & Interfaces, 5, 7094-7100(2013).

    [46] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).

    [47] Tan Y X, Chu W, Lin J T et al. Metal surface structuring with spatiotemporally focused femtosecond laser pulses[J]. Journal of Optics, 20, 014010(2018).

    [48] Li Y P, Zhang T H, Fan S L et al. Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection[J]. Optical Materials, 66, 356-360(2017).

    [49] Chen F, Deng Z F, Yang Q et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass[J]. Optics Letters, 39, 606-609(2014).

    [50] Peng L F, Deng Y J, Yi P Y et al. Micro hot embossing of thermoplastic polymers: a review[J]. Journal of Micromechanics and Microengineering, 24, 013001(2014).

    [51] Liu F, Yang Q, Chen F et al. Low-cost high integration IR polymermicrolens array[J]. Optics Letters, 44, 1600-1602(2019).

    [52] Liu F, Bian H, Zhang F et al. IR artificial compound eye[J]. Advanced Optical Materials, 1901767(2019).

    [53] Aktaş O. Chalcogenide microresonators tailored to distinct morphologies by the shaping of glasses on silica tapers[J]. Optics Letters, 42, 907-910(2017).

    [54] Qiu J F, Li M J, Ye H C et al. Fabrication of high fill-factor microlens array using spatially constrained thermal reflow[J]. Sensors and Actuators A: Physical, 279, 17-26(2018).

    [55] Yamazaki R, Obana A, Kimata M. Microlens for uncooled infrared array sensor[J]. Electronics and Communications in Japan, 96, 42-47(2013).

    [56] Pan A, Gao B, Chen T et al. Fabrication of concave sphericalmicrolenses on silicon by femtosecond laser irradiation and mixed acid etching[J]. Optics Express, 22, 15245-15250(2014).

    [57] Pan A, Chen T, Li C X et al. Parallel fabrication of silicon concave microlens array by femtosecond laser irradiation and mixed acid etching[J]. Chinese Optics Letters, 14, 052201(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160427000053mTpVsY

    [58] Robbins H, Schwartz B. Chemical etching of silicon II[J]. Journal of the Electrochemical Society, 107, 108-111(1960).

    [59] Meng X W, Chen F, Yang Q et al. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching[J]. Applied Physics A, 121, 157-162(2015).

    [60] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concavemicrolens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015).

    [61] Gai X, Han T, Prasad A et al. Progress in optical waveguides fabricated from chalcogenide glasses[J]. Optics Express, 18, 26635-26646(2010).

    [62] Mamedov S B, Mikhailov M D. Dissolution kinetics of glassy and crystalline As2S3 in aqueous sodium sulfide and hydroxide[J]. Journal of Non-Crystalline Solids, 221, 181-186(1997).

    [63] Antoine K, Jain H, Vlcek M. Optical spectroscopy of a-As2Se3 under in situ laser irradiation[J]. Journal of Non-Crystalline Solids, 352, 595-600(2006).

    [64] Zhou W C, Zhang L, Yi A Y. Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays[J]. Optik, 171, 294-303(2018).

    [65] D'Amico C. Caillaud C, Velpula P K, et al. Ultrafast laser-induced refractive index changes in Ge15As15S70 chalcogenide glass[J]. Optical Materials Express, 6, 1914-1928(2016).

    [66] Kuzma V, Bilanych V, Kozejova M et al. Study of dependence of electron beam induced surface relief formation on Ge-As-Se thin films on the film elemental composition[J]. Journal of Non-Crystalline Solids, 456, 7-11(2017).

    [67] Clemens P C. Reversible optical storage on a low-doped Te-based chalcogenide film with a capping layer[J]. Applied Optics, 22, 3165-3168(1983).

    [68] Kadan V, Blonskyi I, Shynkarenko Y et al. Single-pulse femtosecond laser fabrication of concave microlens-and micromirror arrays in chalcohalide glass[J]. Optics & Laser Technology, 96, 283-289(2017).

    [69] Ren H W, Xu S, Wu S T. Gradient polymer network liquid crystal with a large refractive index change[J]. Optics Express, 20, 26464-26472(2012).

    [70] Xin Z W, Wei D, Chen M C et al. Graphene-based adaptive liquid-crystal microlens array for a wide infrared spectral region[J]. Optical Materials Express, 9, 183-194(2019).

    [71] laser-related equipment. ISO 21254-2: 2011[S]. Switzerland: ISO Copyright Office(2011).

    [72] Brady D J, Gehm M E, Stack R A et al. Multiscale gigapixel photography[J]. Nature, 486, 386-389(2012).

    [73] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).

    [74] Xu Q, Dai B, Jiao Z A et al. Fabrication of large micro-structured high-numerical-aperture optofluidic compound eyes with tunable angle of view[J]. Optics Express, 26, 33356(2018).

    [75] Shi C Y, Wang Y Y, Liu C Y et al. SCECam: a spherical compound eye camera for fast location and recognition of objects at a large field of view[J]. Optics Express, 25, 32333-32345(2017).

    [76] Boyd D A, Nguyen V Q. McClain C C, et al. Optical properties of a sulfur-rich organically modified chalcogenide polymer synthesized via inverse vulcanization and containing an organometallic comonomer[J]. ACS Macro Letters, 8, 113-116(2019).

    [77] Babaeian M, Diaz L R, Namnabat S et al. Nonlinear optical properties of chalcogenide hybrid inorganic/organic polymers (CHIPs) using the Z-scan technique[J]. Optical Materials Express, 8, 2510-2519(2018).

    [78] Griebel J J, Namnabat S, Kim E T et al. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers[J]. Advanced Materials, 26, 3014-3018(2014).

    [79] Zeng X F, Smith C T, Gould J C et al. Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light[J]. Journal of Microelectromechanical Systems, 20, 583-593(2011).

    [80] Zhang L, Ma X, Zhuang J et al. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method[J]. Advanced Materials, 19, 3912-3918(2007).

    [81] Zhang S Y, Soibel A, Keo S A et al. Solid-immersion metalenses for infrared focal plane arrays[J]. Applied Physics Letters, 113, 111104(2018).

    [82] Fan D J, Lee B, Coburn C et al. From 2D to 3D: strain-and elongation-free topological transformations of optoelectronic circuits[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3968-3973(2019).

    [83] Zhang K, Jung Y H, Mikael S et al. Origami silicon optoelectronics for hemispherical electronic eye systems[J]. Nature Communications, 8, 1782(2017).

    [84] Gui Y, Chen H R, Yang B et al. Flexible omega-ring metamaterial sensor with ultrahigh sensitivity in the terahertz region[J]. Optical Materials Express, 7, 4123-4130(2017).

    Feng Liu, Fan Zhang, Hao Bian, Qing Yang, Minjing Li, Feng Chen. Development and Preparation of Refractive Infrared Microlens Array Device[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071607
    Download Citation