• Advanced Photonics Nexus
  • Vol. 1, Issue 1, 016001 (2022)
Xiaoyue Liu1, Shengqian Gao1, Chi Zhang2, Ying Pan1, Rui Ma1, Xian Zhang1, Lin Liu1, Zhenda Xie2, Shining Zhu2, Siyuan Yu1, and Xinlun Cai1、*
Author Affiliations
  • 1Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
  • 2Nanjing University, College of Electronic Science and Engineering, School of Physics, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.1.1.016001 Cite this Article Set citation alerts
    Xiaoyue Liu, Shengqian Gao, Chi Zhang, Ying Pan, Rui Ma, Xian Zhang, Lin Liu, Zhenda Xie, Shining Zhu, Siyuan Yu, Xinlun Cai. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate[J]. Advanced Photonics Nexus, 2022, 1(1): 016001 Copy Citation Text show less
    References

    [1] V. Gopalan et al. Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res., 37, 449-489(2007).

    [2] R. S. Weis et al. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).

    [3] J. Zhang et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN. Opt. Express, 16, 6957-6962(2008).

    [4] M. Gong et al. All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MgO:PPLN. Opt. Lett., 35, 2672-2674(2010).

    [5] A. V. Okishev et al. Intracavity-pumped Raman laser action in a mid-IR, continuous-wave (CW) MgO:PPLN optical parametric oscillator. Opt. Express, 14, 12169-12173(2006).

    [6] I.-H. Bae et al. Low-threshold singly-resonant continuous-wave optical parametric oscillator based on MgO-doped PPLN. Appl. Phys. B, 103, 311-319(2011).

    [7] T. Wang et al. Electro-optically spectrum switchable, multiwavelength optical parametric oscillators based on aperiodically poled lithium niobate. Opt. Lett., 45, 5848-5851(2020).

    [8] J. Lu et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

    [9] S. Tanzilli et al. PPLN waveguide for quantum communication. Eur. Phys. J. D, 18, 155-160(2002).

    [10] X. Lu et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nature Physics, 15, 373-381(2019).

    [11] B. S. Elkus et al. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides. Opt. Express, 27, 38521-38531(2019).

    [12] J. Zhao et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [13] C. R. Phillips et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett., 36, 3912-3914(2011). https://doi.org/10.1364/OL.36.003912

    [14] M. Yu et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).

    [15] J. Lu et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492-1495(2019).

    [16] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [17] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [18] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [19] M. Xu et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [20] J. -Y. Chen et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [21] Y. Niu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [22] J. Lu et al. Periodically poled thin-film lithium niobite microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [23] G. -T. Xue et al. “Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. “Phys. Rev. Appl, 15, 064059(2021).

    [24] A. Rao et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W1cm2. Opt. Express, 27, 25920-25930(2019). https://doi.org/10.1364/OE.27.025920

    [25] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [26] C. Wang et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [27] X. Liu et al. Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett., 45, 6318-6321(2020).

    [28] R. Gao et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [29] J. Zhao et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669-19682(2020).

    [30] L. He et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 44, 2314-2317(2019).

    [31] C. Hu et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397-5406(2021).

    [32] Y. Pan et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt. Lett., 46, 1478-1481(2021).

    [33] L. Chang et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [34] X.-H. Tian et al. Effect of dimension variation for second-harmonic generation in lithium niobate on insulator waveguide. Chin. Opt. Lett., 19, 060015(2021).

    [35] M. Santandrea et al. Characterisation of fabrication inhomogeneities in Ti:LiNbO3 waveguides. New J. Phys., 21, 123005(2019). https://doi.org/10.1088/1367-2630/ab5cb5

    Xiaoyue Liu, Shengqian Gao, Chi Zhang, Ying Pan, Rui Ma, Xian Zhang, Lin Liu, Zhenda Xie, Shining Zhu, Siyuan Yu, Xinlun Cai. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate[J]. Advanced Photonics Nexus, 2022, 1(1): 016001
    Download Citation