• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 2, 395 (2022)
Jia-Hua TAO1 and Jun-Hao CHU1、2、*
Author Affiliations
  • 1Nanophotonics and Advanced Instrument Engineering Research Center,Ministry of Education,Key Laboratory of Polar Materials and Devices,Ministry of Education,East China Normal University,Shanghai 200241,China
  • 2National Laboratory for Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai,200083,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.02.004 Cite this Article
    Jia-Hua TAO, Jun-Hao CHU. Research progress and challenges of copper indium gallium selenide thin film solar cells[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 395 Copy Citation Text show less
    References

    [1] Y B Zhang, J H Tao, Y F Chen et al. A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies. RSC Advances, 6, 58046-58054(2016).

    [2] K Yoshikawa, H Kawasaki, W Yoshida et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2, 17032(2017).

    [3] F Haase, C Klamt, S Schäfer et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Solar Energy Materials and Solar Cells, 186, 184-193(2018).

    [4] H Sugimoto. High efficiency and large volume production of CIS-based modules.

    [5] M A Green, E D Dunlop, J Hohl-Ebinger et al. Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications, 28, 629-638(2020).

    [6] First Solar Press Release . First Solar achieves yet another cell conversion efficiency world record, 24 February 2016.

    [7] J H Tao, J F Liu, L L Chen et al. 7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chemistry, 18, 550-557(2016).

    [8] J H Tao, L L Chen, H Y Cao et al. Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. Journal of Materials Chemistry A, 4, 3798-3805(2016).

    [9] J H Tao, X B Hu, Y X Guo et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy, 60, 802-809(2019).

    [10] J H Tao, X B Hu, J J Xue et al. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Solar Energy Materials and Solar Cells, 197, 1-6(2019).

    [11] R Jeyakumar, S Ramamurthy, M Jayachandran et al. Electrochemical preparation and characterization of copper indium diselenide thin films. Materials Research Bulletin, 29, 195-202(1994).

    [12] H Hahn, G Frank, W Klingler et al. Z. Stöerger Ternare Chalkogenide Zeitschrift fur. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 271, 153-170(1953).

    [13] S Wagner, J L Shay, P Migliorato et al. CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters, 25, 434-436(1974).

    [14] L L Kazmerski, F R White, G K Morgan. Thin-film CuInSe2/CdS heterojunction solar cells. Applied Physics Letters, 29, 268-269(1976).

    [15] W E Devaney, R A Michelsen, W S Chen. Recent improvement in CuInSe2/ZnCdS thin film a solar cell efficiency, 1733-1734(1985).

    [16] L L Kazmerski, G A Sanborn. CuInS2 thin-film homojunction solar cells. Journal of Applied Physics, 48, 3178-3180(1977).

    [17] R A Mickelsen, W S Chen. Development of a9.4% efficient thin-film CuInSe2/CdS solar cell, 15, 800-804(1981).

    [18] M Nakamura, K Yamaguchi, Y Kimoto et al. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863-1867(2019).

    [20] K Takuya. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 56, 04CA02-1-04CA02-8(2017).

    [21] S B Zhang, S H Wei, A Zunger et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 57, 9642-9656(1998).

    [22] J H Scofield, A Duda, D Albin et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films, 260, 26-31(1995).

    [23] Y C Wang, H D Shieh. Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process. Applied Physics Letters, 103, 153502(2013).

    [24] X Cui, D Yun, C Zhong et al. A facile route for synthesis of CuInxGa1-xSe2 nanocrystals with tunable composition for photovoltaic application. Journal of Sol-Gel Science and Technology, 76, 469-475(2015).

    [25] B J Stanbery. Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State and Materials Sciences, 27, 73-117(2002).

    [26] H Katagiri. Survey of development of CZTS-based Thin film solar cells, 345-349.

    [27] J Ramanujam, U P Singh. Copper indium gallium selenide based solar cells-a review. Energy Environmental Science, 10, 1306-1319(2017).

    [28] A Romeo, M Terheggen, D Abou-Ras et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12, 93-111(2004).

    [29] R Klenk, T Walter, H W Schock et al. A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Advanced Materials, 5, 114-119(1993).

    [30] A Bosio, N Romeo, A Podesta et al. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal. Crystal Research and Technology, 40, 1040-1053(2005).

    [31] R A Mickelsen, W S Chen. High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell. Applied Physics Letters, 36, 371-373(1980).

    [32] S Binetti, P Garattini, R Mereu et al. Fabricating Cu(In,Ga)Se2 solar cells on flexible substrates by a new roll-to-roll deposition system suitable for industrial applications. Semiconductor Science and Technology, 30, 105006(2015).

    [33] U P Singh, S P Patra. Progress in polycrystalline thin-film Cu(InGa)Se2 solar cells. International Journal of Photoenergy, 2010, 468147(2010).

    [34] N G Dhere. Present status and future prospects of CIGSS thin film solar cells. Solar Energy Materials and Solar Cells, 90, 2181-2190(2006).

    [35] U Rau, H W Schock. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Applied Physics A Materials Science and Processing, 69, 131-147(1999).

    [36] G Hanna, A Jasenek, U Rau et al. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films, 387, 71-73(2001).

    [37] B J Mueller, C Zimmermann, V Haug et al. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se)2 thin films and solar cells formed by the stacked elemental layer process. Journal of Applied Physics, 116, 174503(2014).

    [38] M Bär, W Bohne, J Röhrich et al. Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient. Journal of Applied Physics, 96, 3857-3860(2004).

    [39] D Shin, J Kim, T Gershon et al. Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 157, 695-702(2016).

    [40] L E Oikkonen, M G Ganchenkova, A P Seitsonen et al. Effect of sodium incorporation into CuInSe2 from first principles. Journal of Applied Physics, 114, 083503(2013).

    [41] D W Niles, K Ramanathan, F Hasoon et al. Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A, 15, 3044-3049(1997).

    [42] D W Niles, K Ramanathan, J Granata et al. Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. MRS Proceedings, 485, 179(1997).

    [43] D Braunger, S Zweigart, H Schock. Photovoltaic Solar Energy Conversion, 2, 1113-1116(1998).

    [44] T Kato, J L Wu, Y Hirai et al. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In,Ga)(Se,S)2. IEEE Journal of Photovoltaics, 9, 325-330(2019).

    [45] E S Mungan. Modeling the effects of Na incorporation on CIGS solar cells. IEEE Journal of Photovoltaics, 3, 451-456(2013).

    [46] C P Muzzillo. Review of grain interior, grain boundary, and interface effects of K in CIGS solar cells: Mechanisms for performance enhancement. Solar Energy Materials and Solar Cells, 172, 18-24(2017).

    [47] P Jackson, R Wuerz, D Hariskos et al. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi-Rapid Research Letters, 10, 583-586(2016).

    [48] A Chirilă, P Reinhard, F Pianezzi et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12, 1107-1111(2013).

    [49] P Reinhard, B Bissig, F Pianezzi et al. Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells. Chemistry of Materials, 27, 5755-5764(2015).

    [50] Y M Shin, D H Shin, J H Kim et al. Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells. Current Applied Physics, 11, S59-S64(2011).

    [51] T Nakada, D Iga, H O H Ohbo. Effects of sodium on Cu(In,Ga)Se2-based thin films and solar cells. Japanese Journal of Applied Physics, 36, 732-737(1997).

    [52] R Caballero, C A Kaufmann, T Eisenbarth et al. The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films, 517, 2187-2190(2009).

    [53] T Feurer, P Reinhard, E Avancini et al. Progress in thin film CIGS photovoltaics-Research and development, manufacturing, and applications. Progress in Photovoltaics: Research and Applications, 25, 645-667(2017).

    [54] R Kamada, T Yagioka, S Adachi et al. New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%, 1287-1291(2016).

    [55] P Jackson, D Hariskos, R Wuerz et al. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi-Rapid Research Letters, 9, 28-31(2015).

    [56] T M Friedlmeier, P Jackson, A Bauer et al. Improved photocurrent in Cu(In,Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE Journal of Photovoltaics, 5, 1487-1491(2015).

    [57] T Kobayashi, L K Z Jehl, T Kato et al. A comparative study of Cd- and Zncompound buffer layers on Cu(In1-x,Gax)(Sy,Se1-y)2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 24, 389-396(2016).

    [58] R Klenk, A Steigert, T Rissom et al. Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%. Progress in Photovoltaics: Research and Applications, 22, 161-165(2014).

    [59] S Spiering, A Nowitzki, F Kessler et al. Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation. Solar Energy Materials and Solar Cells, 144, 544-550(2016).

    [60] J Lindahl, U Zimmermann, P Szaniawski et al. Inline Cu(In,Ga)Se co-evaporation for high-efficiency solar cells and modules. IEEE Journal of Photovoltaics, 3, 1100-1105(2013).

    [61] T Törndahl, A Hultqvist, C Platzer-Björkman et al. Growth and characterization of ZnO-based buffer layers for CIGS solar cells. Proc. SPIE 7603, Oxide-based Materials and Devices, 76030D(2010).

    [62] J Nam, Y Kang, D Lee et al. Achievement of 17.9% efficiency in 30×30 cm2 Cu(In,Ga)(Se,S)2 solar cell sub-module by sulfurization after selenization with Cd-free buffer. Progress in Photovoltaics: Research and Applications, 24, 175-182(2016).

    [63] H Hiroi, Y Iwata, S Adachi et al. New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE Journal of Photovoltaics, 6, 760-763(2016).

    [64] T Koida, J Nishinaga, H Higuchi et al. Comparison of ZnO:B and ZnO:Al layers for Cu(In,Ga)Se2 submodules. Thin Solid Films, 614, 79-83(2016).

    [65] R Feist, S Rozeveld, M Mushrush et al. Examination of lifetime-limiting failure mechanisms in CIGSS-based PV minimodules under environmental stress, PVSC 08, 1-5(2008).

    [66] M D Kempe, K M Terwilliger, D Tarrant. Stress induced degradation modes in CIGS mini-modules, PVSC 08, 1-6(2008).

    [67] M Igalson, M Wimbor, J Wennerberg. The change of the electronic properties of CIGS devices induced by the ‘damp heat’ treatment. Thin Solid Films, 403-404, 320-324(2002).

    [68] S Kijima, T Nakada. High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells. Applied Physics Express, 1, 75002(2008).

    [69] D W Lee, W J Cho, J K Song et al. Failure analysis of Cu(In,Ga)Se2 photovoltaic modules: degradation mechanism of Cu(In,Ga)Se2 solar cells under harsh environmental conditions. Progress in Photovoltaics: Research and Applications, 23, 829-837(2015).

    [70] R Sundaramoorthy, F J Pern, C DeHart et al. Stability of TCO window layers for thin-film CIGS solar cells upon damp heat exposures: part II. SPIE, 7412, 74120J-74120J-12(2009).

    [71] F J Pern, R Noufi, X Li et al. Damp-heat induced degradation of transparent conducting oxides for thin-film solar cells, PVSC’08, 1-6(2008).

    [72] C Guillén, J Herrero. Stability of sputtered ITO thin films to the damp-heat test. Surface and Coatings Technology, 201, 309-312(2006).

    [74] S Wiedeman, M E Beck, R Butcher et al. CIGS module development on flexible substrates, 29, 575-578(2002).

    [75] Y Hashimoto, T Satoh, S Shimakawa et al. High efficiency CIGS solar cell on flexible stainless steel. Proc. 3rd World Conference on Photovoltaic Energy Conversion, 3, 574-577(2003).

    [76] C A Kaufmann, A Neisser, R Klenk et al. Transfer of Cu(In,Ga)Se2 thin film solar cells to flexible substrates using an in situ process control. Thin Solid Films, 480/481, 515-519(2005).

    [77] D Bremaud, D Rudmann, M Kaelin et al. Flexible Cu(In,Ga)Se2 on Al foils and the effects of Al during chemical bath deposition. Thin Solid Films, 515, 5857-5861(2007).

    [78] V K Kapur, A Bansal, P Le et al. Non-vacuum processing of CIGS solar cells on flexible polymeric substrates. Proc. 3rd World Conference on Photovoltaic Energy Conversion, 3, 465-468(2003).

    [79] S Ishizuka, A Yamada, K Matsubara et al. Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Current Applied Physics, 10, S154-S156(2010).

    [80] V K Kapur, A Bansal, P Le et al. Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films, 431/432, 53-57(2003).

    [81] F Kessler, D Rudmann. Technological aspects of flexible CIGS solar cells and modules. Solar Energy, 77, 685-695(2004).

    [82] R Wuerz, A Eicke, M Frankenfeld et al. CIGS thin-film solar cells on steel substrates. Thin Solid Films, 517, 2415-2418(2009).

    [83] R Caballero, C A Kaufmann, T Eisenbarth et al. The effect of NaF precursors on low temperature growth of CIGS thin film solar cells on polyimide substrates. Physica Status Solidi A-Applications and Materials Science, 206, 1049-1053(2009).

    [84] P M P Salomé, V Fjällström, P Szaniawski et al. A comparison between thin film solar cells made from co‐evaporated CuIn1‐xGaxSe2 using a one‐stage process versus a three‐stage process. Progress in Photovoltaics: Research and Applications, 23, 470-478(2015).

    [85] K Herz, F Kessler, R Wachter et al. Dielectric barriers for flexible CIGS solar modules. Thin Solid Films, 403/404, 384-389(2002).

    [86] J Penndorf, M Winkler, O Tober et al. CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications. Solar Energy Materials and Solar Cells, 53, 285-298(1998).

    [87] R Caballero, C A Kaufmann, T Eisenbarth et al. High efficiency low temperature grown Cu(In,Ga)Se2 thin film solar cells on flexible substrates using NaF precursor layers. Progress in Photovoltaics: Research and Applications, 19, 547-551(2011).

    [88] S Ishizuka, T Yoshiyama, K Mizukoshi et al. Monolithically integrated flexible Cu(In,Ga)Se2 solar cell submodules. Solar Energy Materials and Solar Cells, 94, 2052-2056(2010).

    [89] H P Shen, T Duong, J Peng et al. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environmental Science, 11, 394-406(2018).

    [90] Q F Han, Y T Hsieh, L Meng et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science, 361, 904-908(2018).

    [91] C D Bailie, M G Christoforo, J P Mailoa et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environmental Science, 8, 956-963(2015).

    [92] D H Kim, C P Muzzillo, J H Tong. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule, 3, 1734-1745(2019).

    [93] A Guchhait, H A Dewi, S. W Leow et al. Over 20% efficient CIGS-perovskite tandem solar cells. ACS Energy Letters, 2, 807-812(2017).

    [94] T Todorov, T Gershon, O Gunawan. Monolithic perovskite-CIGS tandem solar cells via In situ band gap engineering. Advanced Energy Materials, 5, 1500799(2015).

    [95] R X Lin, K Xiao, Z Y Qin et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 4, 864-873(2019).

    [96] K Xiao, R X Lin, Q L Han et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 5, 870-880(2020).

    [97] L X Meng, Y M Zhang, X J Wan et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361, 1094-1098(2018).

    [98] U Rau, H W Schock. llc-4-Cu(In,Ga)Se2 thin-film solar cells, solar cells materials manufacture and operation. Elsevier Science, 303-349(2005).

    [99] J Pettersson, T Torndahl, C Platzer-Bjorkman et al. The influence of absorber thickness on Cu(In,Ga)Se2 solar cells with different buffer layers. IEEE Journal of Photovoltaics, 3, 1376-1382(2013).

    [100] H R Hsu, S C Hsu, Y S Liu. Improvement of Voc and Jsc in CuInGaSe2solar cells using a novel sandwiched CuGa/CuInGa/In precursor structure. Applied Physics Letters, 100, 233903(2012).

    [101] W J Yin, J H Yang, J Kang et al. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 3, 8926-8942(2015).

    [102] M Theelena, F Daume. Stability of Cu(In,Ga)Se2 solar cells: A literature review. Solar Energy, 133, 586-627(2016).

    [103] M Powalla, B Dimmler. Scaling up issues of CIGS solar cells. Thin Solid Films, 361/362, 540-546(2000).

    Jia-Hua TAO, Jun-Hao CHU. Research progress and challenges of copper indium gallium selenide thin film solar cells[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 395
    Download Citation