• Photonics Research
  • Vol. 9, Issue 5, 678 (2021)
Hao Ma1、2、3, Yuanan Zhao1、2、3、*, Yuchen Shao1、2、3, Yafei Lian1、2、3, Weili Zhang1、2、3, Guohang Hu1、2、3, Yuxin Leng4, and Jianda Shao1、2、3、5、6
Author Affiliations
  • 1Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • 4State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 6e-mail: jdshao@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.417642 Cite this Article Set citation alerts
    Hao Ma, Yuanan Zhao, Yuchen Shao, Yafei Lian, Weili Zhang, Guohang Hu, Yuxin Leng, Jianda Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material[J]. Photonics Research, 2021, 9(5): 678 Copy Citation Text show less
    References

    [1] H. Wang, X. Jiao, Q. Liu, X. Xuan, F. Chen, W. Wu. Transparent and conductive oxide films of the perovskite LaxSr1−xSnO3 (x≤ 0.15): epitaxial growth and application for transparent heterostructures. J. Phys. D, 43, 035403(2010).

    [2] J. F. Wager. Transparent electronics. Science, 300, 1245-1246(2003).

    [3] C. G. Granqvist, A. Hultaker. Transparent and conducting ITO films: new developments and applications. Thin Solid Films, 411, 1-5(2002).

    [4] H. Taha, K. Ibrahim, M. M. Rahman, D. J. Henry, C.-Y. Yin, J.-P. Veder, A. Amri, X. Zhao, Z.-T. Jiang. Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applications. Appl. Surf. Sci., 530, 147164(2020).

    [5] X. Li, Z. Deng, J. Li, Y. Li, L. Guo, Y. Jiang, Z. Ma, L. Wang, C. Du, Y. Wang, Q. Meng, H. Jia, W. Wang, W. Liu, H. Chen. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current. Photon. Res., 8, 1662-1670(2020).

    [6] E. W. Li, B. A. Nia, B. K. Zhou, A. X. Wang. Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photon. Res., 7, 473-477(2019).

    [7] D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, D. Wasserman. Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett., 107, 133901(2011).

    [8] Z. Wang, C. Chen, K. Wu, H. Chong, H. Ye. Transparent conductive oxides and their applications in near infrared plasmonics. Phys. Status Solidi A, 216, 1700794(2019).

    [9] M. H. Javani, M. I. Stockman. Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett., 117, 107404(2016).

    [10] E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, V. M. Shalaev, D. Faccio, A. Boltasseva, M. Ferrera. Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Opt. Mater. Express, 8, 3392-3400(2018).

    [11] M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, F. Capolino. Giant field enhancement in longitudinal epsilon-near-zero films. Phys. Rev. B, 95, 161105(2017).

    [12] L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, D. Faccio. Enhanced nonlinear refractive index in epsilon-near-zero materials. Phys. Rev. Lett., 116, 233901(2016).

    [13] N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M.-F. Lin, A. Fujiwara, T. Nabatame, K. Tsukagoshi. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: comparison between Si- and W-dopants. Appl. Phys. Lett., 106, 042106(2015).

    [14] O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer. High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D, 43, 055402(2010).

    [15] Y. Wang, A. Capretti, L. Dal Negro. Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt. Mater. Express, 5, 2415-2430(2015).

    [16] L. Peng, Y. A. Zhao, X. Liu, Z. Cao, D. Li, Y. Lian, Y. Cui, H. Ma, R. Hong, C. Tao, D. Zhang, J. Shao. Tailoring the free carrier and optoelectric properties of indium tin oxide film via quasi-continuous-wave laser annealing. Appl. Surf. Sci., 538, 148104(2021).

    [17] Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, H. Hosono. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater., 29, 1700754(2017).

    [18] J. Guo, H. N. Zhang, C. Zhang, Z. Li, Y. Q. Sheng, C. H. Li, X. H. Bao, B. Y. Man, Y. Jiao, S. Z. Jiang. Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Opt. Mater. Express, 7, 3494-3502(2017).

    [19] Z. M. Zhang, J. J. Liu, Q. D. Hao, J. Liu. Sensitive saturable absorber and optical switch of epsilon-near-zero medium. Appl. Phys. Express, 12, 065504(2019).

    [20] Q. H. Xiao, X. Y. Feng, W. Yang, Y. K. Lin, Q. Q. Peng, S. Z. Jiang, J. Liu, L. B. Su. Epsilon-near-zero indium tin oxide nanocolumns array as a saturable absorber for a Nd:BGO laser. Laser Phys., 30, 055802(2020).

    [21] P. Guo, R. D. Schaller, J. B. Ketterson, R. P. H. Chang. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics, 10, 267-273(2016).

    [22] M. Z. Alam, I. De Leon, R. W. Boyd. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [23] N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, A. Boltasseva. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2, 616-622(2015).

    [24] J. B. Khurgin, M. Clerici, V. Bruno, L. Caspani, C. DeVault, J. Kim, A. Shaltout, A. Boltasseva, V. M. Shalaev, M. Ferrera, D. Faccio, N. Kinsey. Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 7, 226-231(2020).

    [25] C. Lu, H. Xuan, Y. Zhou, X. Xu, Q. Zhao, J. Bai. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering. Photon. Res., 8, 1512-1521(2020).

    [26] J. Liu, H. Nie, B. Yan, K. Yang, H. Yang, V. Khayrudinov, H. Lipsanen, B. Zhang, J. He. Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. Photon. Res., 8, 1035-1041(2020).

    [27] X. Feng, J. Liu, W. Yang, X. Yu, S. Jiang, T. Ning, J. Liu. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Opt. Express, 28, 1554-1560(2020).

    [28] R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, J. Qiu. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser. Nanoscale, 8, 7704-7710(2016).

    [29] C. Gu, H. Zhang, P. You, Q. Zhang, G. Luo, Q. Shen, Z. Wang, J. Hu. Giant and multistage nonlinear optical response in porphyrin-based surface-supported metal-organic framework nanofilms. Nano Lett., 19, 9095-9101(2019).

    [30] Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song. Saturable absorption and reverse saturable absorption in platinum nanoparticles. Opt. Commun., 251, 429-433(2005).

    [31] M. Ali, A. Shehata, M. Ashour, W. Z. Tawfik, R. Schuch, T. Mohamed. Measuring the nonlinear optical properties of indium tin oxide thin film using femtosecond laser pulses. J. Opt. Soc. Am. B, 37, A139-A146(2020).

    [32] H. George, J. Reed, M. Ferdinandus, C. DeVault, A. Lagutchev, A. Urbas, T. B. Norris, V. M. Shalaev, A. Boltasseva, N. Kinsey. Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films. Opt. Mater. Express, 9, 3911-3924(2019).

    [33] N. Kinsey, A. A. Syed, D. Courtwright, C. DeVault, C. E. Bonner, V. I. Gavrilenko, V. M. Shalaev, D. J. Hagan, E. W. Van Stryland, A. Boltasseva. Effective third-order nonlinearities in metallic refractory titanium nitride thin films. Opt. Mater. Express, 5, 2395-2403(2015).

    [34] H. I. Elim, W. Ji, F. Zhu. Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films. Appl. Phys. B, 82, 439-442(2006).

    [35] J. H. Park, C. Buurma, S. Sivananthan, R. Kodama, W. Gao, T. A. Gessert. The effect of post-annealing on indium tin oxide thin films by magnetron sputtering method. Appl. Surf. Sci., 307, 388-392(2014).

    [36] T. A. Gessert, Y. Yoshida, C. C. Fesenmaier, T. J. Coutts. Sputtered In2O3 and ITO thin films containing zirconium. J. Appl. Phys., 105, 083547(2009).

    [37] L. Rodriguez-Sune, M. Scalora, A. S. Johnson, C. Cojocaru, N. Akozbek, Z. J. Coppens, D. Perez-Salinas, S. Wall, J. Trull. Study of second and third harmonic generation from an indium tin oxide nanolayer: influence of nonlocal effects and hot electrons. APL Photon., 5, 010801(2020).

    [38] Y. L. Hu, X. G. Diao, C. Wang, W. C. Hao, T. M. Wang. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum, 75, 183-188(2004).

    [39] P. F. Robusto, R. Braunstein. Optical measurements of the surface-plasmon of indium tin oxide. Phys. Status Solidi A, 119, 155-168(1990).

    [40] M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Vanstryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [41] A. Gnoli, L. Razzari, M. Righini. Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Opt. Express, 13, 7976-7981(2005).

    [42] M. Falconieri. Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J. Opt. A, 1, 662-667(1999).

    [43] M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, M. Ferrera. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun., 8, 15829(2017).

    [44] M. Conforti, G. D. Valle. Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys. Rev. B, 85, 245423(2012).

    [45] M. Scalora, J. Trull, D. de Ceglia, M. A. Vincenti, N. Akozbek, Z. Coppens, L. Rodriguez-Sune, C. Cojocaru. Electrodynamics of conductive oxides: intensity-dependent anisotropy, reconstruction of the effective dielectric constant, and harmonic generation. Phys. Rev. A, 101, 053828(2020).

    [46] D. de Ceglia, M. Scalora, M. A. Vincenti, S. Campione, K. Kelley, E. L. Runnerstrom, J. P. Maria, G. A. Keeler, T. S. Luk. Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Sci. Rep., 8, 9335(2018).

    [47] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [48] R. del Coso, J. Solis. Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B, 21, 640-644(2004).

    [49] R. W. Boyd, Z. M. Shi, I. De Leon. The third-order nonlinear optical susceptibility of gold. Opt. Commun., 326, 74-79(2014).

    [50] D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, M. George. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys., 86, 6200-6205(1999).

    [51] K. P. Wang, J. Wang, J. T. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Y. Feng, X. Y. Zhang, B. X. Jiang, Q. Z. Zhao, H. Z. Zhang, J. N. Coleman, L. Zhang, W. J. Blau. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [52] S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, C. N. R. Rao. Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl. Phys. Lett., 95, 191911(2009).

    [53] A. Mayer, F. Keilmann. Far-infrared nonlinear optics. II. χ(3) contributions from the dynamics of free-carriers in semiconductors. Phys. Rev. B, 33, 6962-6968(1986).

    CLP Journals

    [1] Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616

    Hao Ma, Yuanan Zhao, Yuchen Shao, Yafei Lian, Weili Zhang, Guohang Hu, Yuxin Leng, Jianda Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material[J]. Photonics Research, 2021, 9(5): 678
    Download Citation