• Chinese Optics Letters
  • Vol. 21, Issue 2, 020601 (2023)
Yongxin Cheng1, Xingqi Yang1, Yufan Zhang1, Chao Zhang1, Hao Zhang1, Zhijian Tong1, Yizhan Dai1, Weichao Lü1, Xin Li1, Haiwu Zou1, Zejun Zhang1, and Jing Xu1、2、3、*
Author Affiliations
  • 1Optical Communications Laboratory, Ocean College, Zhejiang University, Zhoushan 316021, China
  • 2Hainan Institute of Zhejiang University, Sanya 572025, China
  • 3Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Zhoushan 316021, China
  • show less
    DOI: 10.3788/COL202321.020601 Cite this Article Set citation alerts
    Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu. 50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition[J]. Chinese Optics Letters, 2023, 21(2): 020601 Copy Citation Text show less
    Process of PAM-4 modulation and demodulation based on FPGA.
    Fig. 1. Process of PAM-4 modulation and demodulation based on FPGA.
    Experimental setup diagram of the proposed UWOC system based on the FPGA and a fiber combiner. Inserts: (a) the FPGA, (b) the transmitter cabin, (c) the receiver cabin, and (d) the transmitter cabin in a 50 m swimming pool.
    Fig. 2. Experimental setup diagram of the proposed UWOC system based on the FPGA and a fiber combiner. Inserts: (a) the FPGA, (b) the transmitter cabin, (c) the receiver cabin, and (d) the transmitter cabin in a 50 m swimming pool.
    (a) P-I and V-I curves of the LD; (b) normalized frequency responses of the system.
    Fig. 3. (a) P-I and V-I curves of the LD; (b) normalized frequency responses of the system.
    Transfer curve of the UWOC system.
    Fig. 4. Transfer curve of the UWOC system.
    Relationships between attenuation of VEA and real-time BER under different bias currents in (a) the electrical PAM-4 scheme and (b) the optical PAM-4 scheme.
    Fig. 5. Relationships between attenuation of VEA and real-time BER under different bias currents in (a) the electrical PAM-4 scheme and (b) the optical PAM-4 scheme.
    BERs of the real-time processing and offline processing at different data rates.
    Fig. 6. BERs of the real-time processing and offline processing at different data rates.
    EVM at different data rates in the optical and electrical PAM-4 UWOC system. Inserts: (a) electrical PAM-4 scheme at 187.5 Mbit/s, (b) optical PAM-4 scheme at 187.5 Mbit/s.
    Fig. 7. EVM at different data rates in the optical and electrical PAM-4 UWOC system. Inserts: (a) electrical PAM-4 scheme at 187.5 Mbit/s, (b) optical PAM-4 scheme at 187.5 Mbit/s.
    Ratio of the amplitude difference at different data rates in the optical and electrical PAM-4 UWOC system.
    Fig. 8. Ratio of the amplitude difference at different data rates in the optical and electrical PAM-4 UWOC system.
    Light Source/DetectoraUnderwater Distance (m)Attenuation CoefficientAttenuation LengthbData RateModulation SchemecHardwaredReference
    LD/PIN35 (tap water)//12.62 Gbit/sPCS-QAM-DMTAWG/OSC2019[12]
    LD/APD60 (tap water)//2.5 Gbit/sOOKAWG/OSC2019[5]
    LD/APD56 (tap water)0.0876 m−14.90563.31 Gbit/sQAMAWG/OSC2020[13]
    LD/MPPC100 (pool water)0.24 m−1248.4 Mbit/sOOKAWG/OSC2020[6]
    LD/PMT100 (pool water)0.0585 m−15.85200 Mbit/sOOKAWG/OSC2021[7]
    LD/PMT150 (pool water)0.053 m−18.775500 Mbit/sPAMAWG/OSC2021[8]
    LD/PMT200 (pool water)0.0325 m−16.5500 Mbit/sPAMAWG/OSC2021[9]
    LD/PMT100.6 (tap water)0.0658 m−16.61953 Gbit/sOOKAWG/OSC2022[10]
    LD/PMT5 (turbid water)//10 Mbit/sPPMFPGA2016[14]
    LD/PIN3 (artificial seawater)0.481 m−11.44350 Mbit/sQAMFPGA2019[15]
    LED/PIN1.2 (tap water)//2.34 Gbit/sDMTFPGA2020[16]
    LED/APD10 (tap water)0.056 m−10.561 Mbit/sFSKFPGA2020[17]
    LD/APD3.6 (tap water)//2.2 Gbit/sOFDMFPGA2020[18]
    LD/SPAD2 (tap water)//6.21 Mbit/sPPMFPGA2021[11]
    LD/PMT50 (pool water)0.1307 m−16.535187.5 Mbit/sPAMFPGAThis work
    Table 1. The Progress of UWOC Systems
    Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu. 50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition[J]. Chinese Optics Letters, 2023, 21(2): 020601
    Download Citation