• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0728002 (2022)
Mengdi Nie1, Gang Zheng1、*, Xiongxing Zhang1, Qiming Sheng2, Yuan Guo1, Lang Bai1, and Yuan Han2
Author Affiliations
  • 1School of Opto-Electronic Engineering, Xi'an Technological University, Xi'an , Shaanxi 710021, China
  • 2School of Electronic Information Engineering, Xi'an Technological University, Xi'an , Shaanxi 710021, China
  • show less
    DOI: 10.3788/LOP202259.0728002 Cite this Article Set citation alerts
    Mengdi Nie, Gang Zheng, Xiongxing Zhang, Qiming Sheng, Yuan Guo, Lang Bai, Yuan Han. Compensation for Temperature Drift in Frequency-Modulated Continuous-Wave Interference Fiber Optic Pressure Sensor[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0728002 Copy Citation Text show less
    References

    [1] Zhang W H, Jiang J F, Wang S et al. Fiber-optic Fabry-Perot high-pressure sensor for marine applications[J]. Acta Optica Sinica, 37, 0206001(2017).

    [2] Yu Q X, Wang X N, Song S D et al. Fiber optic pressure sensor system based on extrinsic Fabry-Perot interferometer for high temperature oil well measurement[J]. Journal of Optoelectronics·Laser, 18, 299-302(2007).

    [3] Liu Q H, Zhong H X, Tao F et al. Kalman filter fusion algorithm and its application in highly precise measurement of liquid level in ship tank[J]. Shipbuilding of China, 57, 192-200(2016).

    [4] Liao B, Lin H Y, Wang Y. Latest progress of field-emission pressure sensors[J]. Vacuum Science and Technology, 20, 413-418(2000).

    [5] Zheng J. Continued analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 44, 765-769(2005).

    [6] Zheng J. Coherence analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 45, 3681-3687(2006).

    [7] Zheng J. Single-mode birefringent fiber frequency-modulated continuous-wave interferometric strain sensor[J]. IEEE Sensors Journal, 10, 281-285(2010).

    [8] Zheng J. Reflectometric singlemode elliptical-core fibre strain sensor with remote interrogation[J]. Electronics Letters, 43, 1345-1346(2007).

    [9] Dinh N, Kanoun O. Temperature-compensated force/pressure sensor based on multi-walled carbon nanotube epoxy composites[J]. Sensors, 15, 11133-11150(2015).

    [10] Hu P, Tong X L, Zhao M L et al. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation[J]. Optical Engineering, 54, 097104(2015).

    [11] Ali I, Asif M, Shehzad K et al. A highly accurate, polynomial-based digital temperature compensation for piezoresistive pressure sensor in 180 nm CMOS technology[J]. Sensors, 20, 5256(2020).

    [12] Huang J, Zhou Z D, Wen X Y et al. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation[J]. Measurement, 46, 1041-1046(2013).

    [13] Zhao Z W, Wang W Y, Zhang M et al. A new temperature compensation method by optimizing the structure of extrinsic Fabry-Perot interferometric optical fiber sensor[J]. Laser & Optoelectronics Progress, 50, 090605(2013).

    [14] Guo Z J, Lu W K, Zuo F et al. Temperature compensation of strain gauge pressure sensor based on NSGA-Ⅱ & BP[J]. China Measurement & Test, 46, 72-77(2020).

    [15] Jing L Q, Zheng G, Sun B et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique[J]. Chinese Journal of Lasers, 46, 1204001(2019).

    [16] Peng X L, Zhang H, Li Y L. Thermal stress and the associated photoelastic effect of the metal coated fiber loop[J]. Acta Optica Sinica, 34, 1106004(2014).

    Mengdi Nie, Gang Zheng, Xiongxing Zhang, Qiming Sheng, Yuan Guo, Lang Bai, Yuan Han. Compensation for Temperature Drift in Frequency-Modulated Continuous-Wave Interference Fiber Optic Pressure Sensor[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0728002
    Download Citation