• Acta Optica Sinica
  • Vol. 42, Issue 9, 0913001 (2022)
Guofeng Zhu, Zhenrong Dai, Xuewei Ju, Shuncong Zhong, Xiangfeng Wang, and Feng Huang*
Author Affiliations
  • School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, China
  • show less
    DOI: 10.3788/AOS202242.0913001 Cite this Article Set citation alerts
    Guofeng Zhu, Zhenrong Dai, Xuewei Ju, Shuncong Zhong, Xiangfeng Wang, Feng Huang. On-Chip Terahertz Demultiplexer and Grating Coupler Based on Reverse Design[J]. Acta Optica Sinica, 2022, 42(9): 0913001 Copy Citation Text show less
    References

    [1] Yang X, Zhao X, Yang K et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 34, 810-824(2016).

    [2] Zhong S C. Progress in terahertz nondestructive testing: a review[J]. Frontiers of Mechanical Engineering, 14, 273-281(2019).

    [3] Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Physical Communication, 12, 16-32(2014).

    [4] Singh R, Cao W, Al-Naib I et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 105, 171101(2014).

    [5] Lin Y Z, Yao H Z, Ju X W et al. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining[J]. Optics Express, 25, 25125-25134(2017).

    [6] Chen Y Q, Gao B P, Lin Y Z et al. Metal wire grid terahertz polarizer fabricated by femtosecond laser micro-machining[J]. Chinese Journal of Lasers, 45, 0802005(2018).

    [7] Ju X W, Hu Z Q, Huang F et al. Tunable ultrasharp terahertz plasma edge in a lightly doped narrow-gap semiconductor[J]. Optics Express, 29, 9261-9268(2021).

    [8] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015).

    [9] Lalau-Keraly C M, Bhargava S, Miller O D et al. Adjoint shape optimization applied to electromagnetic design[J]. Optics Express, 21, 21693-21701(2013).

    [10] Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).

    [11] Shen B, Wang P, Polson R et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm 2 footprint[J]. Nature Photonics, 9, 378-382(2015).

    [12] Liu Z H, Liu X H, Xiao Z Y et al. Integrated nanophotonic wavelength router based on an intelligent algorithm[J]. Optica, 6, 1367-1373(2019).

    [13] Huang J, Yang J B, Chen D B et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials[J]. Nanophotonics, 9, 159-166(2019).

    [14] He W B, Tong M Y, Xu Z J et al. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface[J]. Photonics Research, 9, 1099-1108(2021).

    [15] Pan W L, Chen H M, Zhuang Y Y et al. Hybrid demultiplexer for mode-wavelength division based on nanowire waveguides and one-dimensional photonic crystal nanobeam cavity[J]. Acta Optica Sinica, 41, 0413001(2021).

    [16] Rakhshani M R. Compact eight-channel wavelength demultiplexer using modified photonic crystal ring resonators for CWDM applications[J]. Photonic Network Communications, 39, 143-151(2020).

    [17] Wu R, Li L F, Ma Y Y. Research and design of six-channel photonic crystal wavelength division multiplexer[J]. Laser & Optoelectronics Progress, 58, 0323002(2021).

    [18] Pan W, Zhang X W, Ma Y et al. A terahertz demultiplexer based on metamaterials applied to terahertz communication systems[J]. Progress in Electromagnetics Research Letters, 97, 13-19(2021).

    [19] Li J S, Liu H, Zhang L. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal[J]. Optics Communications, 350, 248-251(2015).

    [20] Liu M, Zheng X, Liu W F et al. Design of vertical grating coupler based on sub-wavelength line gratings[J]. Laser & Optoelectronics Progress, 58, 1705002(2021).

    [21] Chen B, Zhang X, Hu J et al. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss[J]. Optics Express, 28, 4001-4009(2020).

    [22] Zhang Z Y, Chen X, Cheng Q et al. Two-dimensional apodized grating coupler for polarization-independent and surface-normal optical coupling[J]. Journal of Lightwave Technology, 38, 4037-4044(2020).

    [23] Kim H J, Park I, Beom-Hoan O et al. Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing[J]. Optics Express, 12, 5625-5633(2004).

    [24] Lu J. Vuckovi J. Inverse design of nanophotonic structures using complementary convex optimization[J]. Optics Express, 18, 3793-3804(2010).

    [25] Boyd S, Parikh N, Chu E et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[M]. Hanover: Now Publishers Inc, 13-23(2011).

    [26] Amarloo H, Safavi-Naeini S. Terahertz line defect waveguide based on silicon-on-glass technology[J]. IEEE Transactions on Terahertz Science and Technology, 7, 433-439(2017).

    Guofeng Zhu, Zhenrong Dai, Xuewei Ju, Shuncong Zhong, Xiangfeng Wang, Feng Huang. On-Chip Terahertz Demultiplexer and Grating Coupler Based on Reverse Design[J]. Acta Optica Sinica, 2022, 42(9): 0913001
    Download Citation