• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802003 (2021)
Zhanjiang Zhai1、2, Lin Zhao1、**, Yun Peng1、*, Jiao Zhu2, and Yang Cao1
Author Affiliations
  • 1Institute of Welding, Central Iron & Steel Research Institute, Beijing 100081, China;
  • 2NCS Testing Technology Co., Ltd., Beijing 100081, China
  • show less
    DOI: 10.3788/CJL202148.1802003 Cite this Article Set citation alerts
    Zhanjiang Zhai, Lin Zhao, Yun Peng, Jiao Zhu, Yang Cao. Low Cycle Fatigue Behavior of Laser Welded DP980 Steel Joints[J]. Chinese Journal of Lasers, 2021, 48(18): 1802003 Copy Citation Text show less
    References

    [1] Russo S P, D’uto F, Matteis P et al. Dissimilar arc welding of advanced high-strength car-body steel sheets[J]. Journal of Materials Engineering and Performance, 23, 3949-3956(2014).

    [2] Jia J, Yang S L, Ni W Y et al. Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels[J]. Journal of Materials Research, 29, 2565-2575(2014).

    [3] Gao B, Chen X F, Pan Z Y et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 54, 12898-12910(2019).

    [4] Jia Q, Guo W, Peng P et al. Microstructure- and strain rate-dependent tensile behavior of fiber laser-welded DP980 steel joint[J]. Journal of Materials Engineering and Performance, 25, 668-676(2016).

    [5] Ma M T, Wu B R. Dual phase steel: physical and mechanical metallurgy[M]. 2nd ed, 1-5(2009).

    [6] Sherman A M, Davies R G. Influence of martensite carbon content on the cyclic properties of dual-phase steel[J]. International Journal of Fatigue, 3, 195-198(1981).

    [7] Mediratta S R, Ramaswamy V, Rao P R. Low cycle fatigue behaviour of dual-phase steel with different volume fractions of martensite[J]. International Journal of Fatigue, 7, 101-106(1985).

    [8] Paul S K, Stanford N, Hilditch T. Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels: experimental and microstructural investigation[J]. Materials Science and Engineering: A, 638, 296-304(2015).

    [9] Wang Z G, Wang G N, Ke W et al. Influence of the martensite content on the fatigue behaviour of a dual-phase steel[J]. Materials Science and Engineering, 91, 39-44(1987).

    [10] Majumdar S, Roy S, Ray K K. Fatigue performance of dual-phase steels for automotive wheel application[J]. Fatigue & Fracture of Engineering Materials & Structures, 40, 315-332(2017).

    [11] Mediratta S R, Ramaswamy V, Rao P R. Influence of ferrite-martensite microstructural morphology on the low cycle fatigue of a dual-phase steel[J]. International Journal of Fatigue, 7, 107-115(1985).

    [12] Mediratta S R, Ramaswamy V, Rao P R. Two stage cyclic work hardening and two slope coffin-Manson relationship in dual phase steels[J]. Scripta Metallurgica, 20, 555-558(1986).

    [13] Mediratta S R, Ramaswamy V, Rao P R. On the estimation of the cyclic plastic strain energy of dual-phase steels[J]. International Journal of Fatigue, 10, 13-19(1988).

    [14] Mediratta S R, Ramaswamy V, Rao P R. On the transition fatigue life in dual phase steels[J]. Scripta Metallurgica, 21, 377-380(1987).

    [15] Li X J, Huang J, Pan H et al. Microstructure and formability of laser welding joint of QP1180 high-strength steel sheet[J]. Chinese Journal of Lasers, 46, 0302006(2019).

    [16] Rauschenberger J, Cenigaonaindia A, Keseberg J et al. Laser hybrid joining of plastic and metal components for lightweight components[J]. Proceedings of SPIE, 9356, 93560B(2015).

    [17] Huan P C, Wang X N, Zhu T C et al. Microstructure and mechanical properties of laser welded joint of 800 MPa grade hot-rolled high strength steel[J]. Chinese Journal of Lasers, 46, 0102002(2019).

    [18] Farabi N, Chen D L, Zhou Y. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints[J]. Journal of Alloys and Compounds, 509, 982-989(2011).

    [19] Saha D C, Westerbaan D, Nayak S S et al. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels[J]. Materials Science and Engineering: A, 607, 445-453(2014).

    [20] Parkes D, Xu W, Westerbaan D et al. Microstructure and fatigue properties of fiber laser welded dissimilar joints between high strength low alloy and dual-phase steels[J]. Materials & Design, 51, 665-675(2013).

    [21] Biro E, McDermid J R, Embury J D et al. Softening kinetics in the subcritical heat-affected zone of dual-phase steel welds[J]. Metallurgical and Materials Transactions A, 41, 2348-2356(2010).

    [22] Manson S S. Fatigue: a complex subject: some simple approximations[J]. Experimental Mechanics, 5, 193-226(1965).

    [23] Yang F M, Sun X F, Guan H R et al. Low cycle fatigue behavior of K40S cobalt-base superalloy at elevated temperature I. Fatigue properties[J]. Acta Metallrugica Sinica, 38, 1047-1052(2002).

    [24] Zhai Z J, Cao Y, Zhao L et al. Effect of heat input on microstructure and mechanical properties of laser welded DP600 steel[J]. Journal of Iron and Steel Research, 31, 582-591(2019).

    [25] Xu W F, Liu J H, Chen D L. Study on nonhomogeneity of low-cycle fatigue properties along thickness direction of plate for friction stir welded aluminum alloy joint[J]. Acta Metallurgica Sinica, 51, 587-596(2015).

    [26] Luo X Y, Zhao R G, He W et al. Analysis on low cycle fatigue properties and fractography of TC25 titanium alloy[J]. Chinese Journal of Solid Mechanics, 32, 145-150(2011).

    Zhanjiang Zhai, Lin Zhao, Yun Peng, Jiao Zhu, Yang Cao. Low Cycle Fatigue Behavior of Laser Welded DP980 Steel Joints[J]. Chinese Journal of Lasers, 2021, 48(18): 1802003
    Download Citation