• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2400002 (2021)
Yingzhao Wei1, Xing Yuan1, Gongpu Lan2、3、4, Yanping Huang2、3、4, Jia Qin2、3、4, Lin An2、3、4, Haishu Tan2、3, Shangjie Ren5, Shiyong Zhao6, Jiaqi Bie7, Haibo Jia8, Bo Yu8, and Jingjiang Xu2、3、4、*
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong 528200, China
  • 2School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528200, China
  • 3Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, Guangdong 528200, China
  • 4Innovation and Entrepreneurship Teams Project of Guangdong Pearl River Talents Program, Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
  • 5Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • 6Tianjin Horimed Technology Co., Ltd, Tianjin 300000, China
  • 7School of Astronautics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 8Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Key Laboratory of Medical Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP202158.2400002 Cite this Article Set citation alerts
    Yingzhao Wei, Xing Yuan, Gongpu Lan, Yanping Huang, Jia Qin, Lin An, Haishu Tan, Shangjie Ren, Shiyong Zhao, Jiaqi Bie, Haibo Jia, Bo Yu, Jingjiang Xu. Research Progress and Application of Cardiovascular Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400002 Copy Citation Text show less
    References

    [1] Members W G, Benjamin E J, Blaha M J et al. Heart disease and stroke statistics: 2017 update: a report from the American Heart Association[J]. Circulation, 135, e146(2017).

    [2] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [3] Gabriele M L, Wollstein G, Ishikawa H et al. Optical coherence tomography: history, current status, and laboratory work[J]. Investigative Ophthalmology & Vissual Science, 52, 2425-2436(2011).

    [4] Rimayanti U, Kiuchi Y, Maulidia R. The development and applications of optical coherence tomography[J]. Austin Journal Clinical Ophthalmology, 1, 1032-1038(2014).

    [5] Tearney G J, Brezinski M E, Boppart S A et al. Catheter-based optical imaging of a human coronary artery[J]. Circulation, 94, 3013(1996).

    [6] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).

    [7] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [8] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).

    [9] Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 57, OCT1-OCT13(2016).

    [10] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002).

    [11] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited[J]. Biomedical Optics Express, 8, 1638-1664(2017).

    [12] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).

    [13] Golubovic B, Bouma B E, Tearney G J et al. Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr 4+: forsterite laser[J]. Optics Letters, 22, 1704-1706(1997).

    [14] Yun S H, Tearney G J, de Boer J F et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).

    [15] Oh W Y, Yun S H, Tearney G J et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser[J]. Optics Letters, 30, 3159-3161(2005).

    [16] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    [17] Potsaid B, Baumann B, Huang D et al. Ultrahigh speed 1050 nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100, 000 to 400, 000 axial scans per second[J]. Optics Express, 18, 20029-20048(2010).

    [18] Xu J J, Zhang C, Xu J B et al. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch[J]. Optics Letters, 39, 622-625(2014).

    [19] Xu J J, Wei X M, Yu L Q et al. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch[J]. Biomedical Optics Express, 6, 1340-1350(2015).

    [20] Xu J J, Song S Z, Men S J et al. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations[J]. Journal of Biomedical Optics, 22, 116007(2017).

    [21] Bouma B E, Villiger M, Otsuka K et al. Intravascular optical coherence tomography [Invited[J]. Biomedical Optics Express, 8, 2660-2686(2017).

    [22] Tearney G J, Brezinski M E, Southern J E et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography[J]. American Journal of Gastroenterology (Springer Nature), 92, 1800-1804(1997).

    [23] Brezinski M E, Tearney G J, Bouma B E et al. Imaging of coronary artery microstructure (in vitro) with optical coherence tomography[J]. The American Journal of Cardiology, 77, 92-93(1996).

    [24] Welzel J, Lankenau E, Birngruber R et al. Optical coherence tomography of the human skin[J]. Journal of the American Academy of Dermatology, 37, 958-963(1997).

    [25] Fujimoto J G, Brezinski M E, Tearney G J et al. Optical biopsy and imaging using optical coherence tomography[J]. Nature Medicine, 1, 970-972(1995).

    [26] Tearney G J, Boppart S A, Bouma B E et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 21, 543-545(1996).

    [27] Brezinski M E, Tearney G J, Weissman N J et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound[J]. Heart, 77, 397-403(1997).

    [28] Fujimoto J G, Boppart S A, Tearney G J et al. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 82, 128-133(1999).

    [29] Jang I K, BoumaB E, Kang D H et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. Journal of the American College of Cardiology, 39, 604-609(2002).

    [30] Gora M J, Suter M J, Tearney G J et al. Endoscopic optical coherence tomography: technologies and clinical applications [Invited][J]. Biomedical Optics Express, 8, 2405-2444(2017).

    [31] Adams D C, Wang Y, Hariri L P et al. Advances in endoscopic optical coherence tomography catheter designs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 210-221(2016).

    [32] He D H, Li Z L, Nan N et al. A probe driven by miniature propeller for intravascular optical coherence tomography[J]. Chinese Journal of Lasers, 47, 1107002(2020).

    [33] Yu B, Ge J B, Han Y L. Optical coherence tomography in cardiovascular clinic[M], 13-18(2020).

    [34] Tearney G J, Regar E, Akasaka T et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation[J]. Journal of the American College of Cardiology, 59, 1058-1072(2012).

    [35] Prati F, Cera M, Ramazzotti V et al. Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios[J]. EuroIntervention, 3, 365-370(2007).

    [36] Tearney G J, Regar E, Akasaka T et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation[J]. Journal of the American College of Cardiology, 59, 1058-1072(2012).

    [37] Yabushita H, Bouma B E, Houser S L et al. Characterization of human atherosclerosis by optical coherence tomography[J]. Circulation, 106, 1640-1645(2002).

    [38] Virmani R, Kolodgie F D, Burke A P et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1262-1275(2000).

    [39] Kereiakes D J, Ellis S G, Metzger C et al. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial[J]. Journal of the American College of Cardiology, 70, 2852-2862(2017).

    [40] Yu B, Ge J B, Han Y L. Optical coherence tomography in cardiovascular clinic[M], 177-200(2020).

    [41] Klein T, Huber R. High-speed OCT light sources and systems [Invited][J]. Biomedical Optics Express, 8, 828-859(2017).

    [42] Wang T, Pfeiffer T, Regar E et al. Heartbeat OCT and motion-free 3D in vivo coronary artery microscopy[J]. JACC: Cardiovascular Imaging, 9, 622-623(2016).

    [43] Hartl I, Li X D, Chudoba C et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 26, 608-610(2001).

    [44] Kassani S H, Villiger M, Uribe-Patarroyo N et al. Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging[J]. Optics Express, 25, 8255-8266(2017).

    [45] Liu L, Gardecki J A, Nadkarni S K et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography[J]. Nature Medicine, 17, 1010-1014(2011).

    [46] Zhang Y R, Chang Y, Gao W R. Effect of light polarization state on phase delay measurement induced by tissue birefringence in polarization-sensitive optical coherence tomography imaging system[J]. Acta Optica Sinica, 39, 1212007(2019).

    [47] Otsuka K, Villiger M, NadkarniS K et al. Intravascular polarimetry: clinical translation and future applications of catheter-based polarization sensitive optical frequency domain imaging[J]. Frontiers in Cardiovascular Medicine, 7, 146(2020).

    [48] Nam H S, Song J W, Jang S J et al. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography[J]. Journal of Biomedical Optics, 21, 075004(2016).

    [49] Tanaka M, Hirano M, Murashima K et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 23, 6645-6655(2015).

    [50] Fard A M, Vacas-Jacques P, Hamidi E et al. Optical coherence tomography-near infrared spectroscopy system and catheter for intravascular imaging[J]. Optics Express, 21, 30849-30858(2013).

    [51] Wang J P, Chen M H, Tan W J et al. Dual-modality endoscopic probe for optical coherence tomography imaging and pH sensing[J]. Chinese Journal of Lasers, 47, 0907001(2020).

    [52] Ughi G J, Verjans J, Fard A M et al. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging[J]. The International Journal of Cardiovascular Imaging, 31, 259-268(2015).

    [53] Wang H, Gardecki J A, Ughi G J et al. Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm[J]. Biomedical Optics Express, 6, 1363-1375(2015).

    [54] Lee M W, Song J W, Kang W J et al. Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging[J]. Scientific Reports, 8, 14561(2018).

    [55] Wang S L, Zhao S H, Lu M J. Cardiac T1-mapping and T2-mapping and their application in myocardial infarction[J]. Radiologic Practice, 34, 694-697(2019).

    [56] Zhao S H. Cardiac MRI techniques: new challenges[J]. Chinese Journal of Medical Imaging Technology, 33, 1125-1128(2017).

    [57] He X W, Wang S Y, Zhang C et al. Construction of DLP high-precision 3D printing system and its application in cell printing[J]. Micronanoelectronic Technology, 57, 216-222(2020).

    [58] Ni Y K, Zhao J L, Fu L et al. Application of three dimensional printing technology in structural heart disease[J]. International Journal of Cardiovascular Disease, 46, 56-60(2019).

    [59] Cui L, Yan Z N. Clinical application of myocardial contrast echocardiography[J]. International Journal of Cardiovascular Disease, 47, 29-31(2020).

    [60] Xu F, Zhang R L, Sun Y et al. Quantitative study of myocardial microcirculation perfusion in acute coronary occlusion rabbits[J]. Chinese Journal of Ultrasound in Medicine, 34, 942-945(2018).

    [61] Chen H M, Lai Y Q, Yang X L et al. Evaluation of myocardial perfusion and prognosis after acute myocardial infarction by real-time myocardiography[J]. Journal of Practical Medical Imaging, 20, 556-560(2019).

    [62] Liang P, Li R, Liu R. Quantitative analysis of blood flow reserve fraction and myocardial contrast acoustic in diagnosis of coronary artery stenosis: a comparative study[J]. Technology & Management, 61-62(2017).

    [63] Gaibazzi N, Giumelli C, Martella E M et al. Contrast-echocardiography for the differential diagnosis of atrial masses[J]. European Heart Journal, 34, 1957(2013).

    [64] Huang X B, Liu Y L, Zha D G et al. Early detection of coronary microvascular endothelial dysfunction using intravenous myocardial contrast echocardiography[J]. Chinese Journal of Ultrasound in Medicine, 18, 321-323(2002).

    Yingzhao Wei, Xing Yuan, Gongpu Lan, Yanping Huang, Jia Qin, Lin An, Haishu Tan, Shangjie Ren, Shiyong Zhao, Jiaqi Bie, Haibo Jia, Bo Yu, Jingjiang Xu. Research Progress and Application of Cardiovascular Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400002
    Download Citation