• Laser & Optoelectronics Progress
  • Vol. 60, Issue 3, 0312020 (2023)
Mu Chen, Haoran Jin*, Keji Yang, and Bingfeng Ju
Author Affiliations
  • School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    DOI: 10.3788/LOP223109 Cite this Article Set citation alerts
    Mu Chen, Haoran Jin, Keji Yang, Bingfeng Ju. Wavenumber-Domain Fast Reconstruction Technique Using Ultrasonic Scanning for Transverse Wave Imaging[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312020 Copy Citation Text show less
    References

    [1] Wu H T, Chen J, Wu S W et al. A model-based regularized inverse method for ultrasonic B-scan image reconstruction[J]. Measurement Science and Technology, 26, 105401(2015).

    [2] Wu H T, Chen J, Yang K J et al. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration[J]. Measurement Science and Technology, 27, 045401(2016).

    [3] Burch S F. Comparison of SAFT and two-dimensional deconvolution methods for the improvement of resolution in ultrasonic B-scan images[J]. Ultrasonics, 25, 259-266(1987).

    [4] Cai D, Li Z F, Chen S L. Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique[J]. Chinese Optics Letters, 13, 101101(2015).

    [5] Lin X W, Feng N Z, Qu Y W et al. Compressed sensing in synthetic aperture photoacoustic tomography based on a linear-array ultrasound transducer[J]. Chinese Optics Letters, 15, 101102(2017).

    [6] Yu B, Jin H, Mei Y et al. 3-D ultrasonic image reconstruction in frequency domain using a virtual transducer model[J]. Ultrasonics, 118, 106573(2022).

    [7] Yang X J, Cai X, Maslov K et al. High-resolution photoacoustic microscope for rat brain imaging in vivo[J]. Chinese Optics Letters, 8, 609-611(2010).

    [8] Lin S B, Shams S, Choi H et al. Ultrasonic imaging of multi-layer concrete structures[J]. NDT & E International, 98, 101-109(2018).

    [9] Qin L, Zhang S, Song Y et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International, 124, 102523(2021).

    [10] Jin H R, Zheng Z S, Liao X Q et al. Image reconstruction of immersed ultrasonic testing for strongly attenuative materials[J]. Mechanical Systems and Signal Processing, 168, 108654(2022).

    [11] Gazdag J. Wave equation migration with the phase-shift method[J]. GEOPHYSICS, 43, 1342-1351(1978).

    [12] Stolt R H. Migration by Fourier transform[J]. GEOPHYSICS, 43, 23-48(1978).

    [13] Gazdag J, Sguazzero P. Migration of seismic data by phase shift plus interpolation[J]. GEOPHYSICS, 49, 124-131(1984).

    [14] Stoffa P L, Fokkema J T, de Luna Freire R M et al. Split-step Fourier migration[J]. GEOPHYSICS, 55, 410-421(1990).

    [15] Stepinski T. An implementation of synthetic aperture focusing technique in frequency domain[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1399-1408(2007).

    [16] Schleicher J, Costa J C, Novais A. A comparison of imaging conditions for wave-equation shot-profile migration[J]. GEOPHYSICS, 73, S219-S227(2008).

    [17] Olofsson T. Phase shift migration for imaging layered objects and objects immersed in water[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 2522-2530(2010).

    [18] Skjelvareid M H, Olofsson T, Birkelund Y et al. Synthetic aperture focusing of ultrasonic data from multilayered media using an omega-K algorithm[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 1037-1048(2011).

    [19] Huang L J, Quan Y L. Ultrasound pulse-echo imaging using the split-step Fourier propagator[J]. Proceedings of SPIE, 6513, 651305(2007).

    [20] Li H J, Le Lawrence H, Sacchi M D et al. Ultrasound imaging of long bone fractures and healing with the split-step Fourier imaging method[J]. Ultrasound in Medicine & Biology, 39, 1482-1490(2013).

    [21] Lukomski T. Non-stationary phase shift migration for flaw detection in objects with lateral velocity variations[J]. Insight, 56, 477-482(2014).

    [22] Lukomski T. Full-matrix capture with phased shift migration for flaw detection in layered objects with complex geometry[J]. Ultrasonics, 70, 241-247(2016).

    [23] Yu B, Jin H R, Mei Y J et al. A modified wavenumber algorithm of multi-layered structures with oblique incidence based on full-matrix capture[J]. Applied Sciences, 11, 10808(2021).

    [24] Hunter A J, Drinkwater B W, Wilcox P D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2450-2462(2008).

    [25] Jin H R, Chen J. An efficient wavenumber algorithm towards real-time ultrasonic full-matrix imaging of multi-layered medium[J]. Mechanical Systems and Signal Processing, 149, 107149(2021).

    [26] Carcione J M, Feliciangeli L P, Zamparo M. The exploding-reflector concept for ground-penetrating-radar modeling[J]. Annals of Geophysics, 45, 473-478(2009).

    [27] Soumekh M[M]. Synthetic aperture radar signal processing with MATLAB algorithms(1999).

    [28] Kong Y, Bennett C J, Hyde C J et al. A review of non-destructive testing techniques for the in situ investigation of fretting fatigue cracks[J]. Materials & Design, 196, 109093(2020).

    [29] Li W T, Zhou Z G, Li Y. Inspection of butt welds for complex surface parts using ultrasonic phased array[J]. Ultrasonics, 96, 75-82(2019).

    Mu Chen, Haoran Jin, Keji Yang, Bingfeng Ju. Wavenumber-Domain Fast Reconstruction Technique Using Ultrasonic Scanning for Transverse Wave Imaging[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312020
    Download Citation