• Journal of Semiconductors
  • Vol. 41, Issue 12, 122101 (2020)
Dandan Ning1、2, Yanan Chen2、3, Xinkun Li4, Dechun Liang4, Shufang Ma1, Peng Jin2、3, and Zhanguo Wang2、3
Author Affiliations
  • 1Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
  • 2Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Beijing Institute of Aerospace Control Instruments, Beijing 100039, China
  • show less
    DOI: 10.1088/1674-4926/41/12/122101 Cite this Article
    Dandan Ning, Yanan Chen, Xinkun Li, Dechun Liang, Shufang Ma, Peng Jin, Zhanguo Wang. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. Journal of Semiconductors, 2020, 41(12): 122101 Copy Citation Text show less
    References

    [1] P Bhattacharya, K Kamath, J Singh et al. In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties. IEEE Trans Electron Devices, 46, 871(2017).

    [2] D. Bimberg. Quantum dots for lasers, amplifiers and computing. J Phys D, 38, 2055(2005).

    [3] K A Sablon, J W Little, V Mitin et al. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett, 11, 2311(2011).

    [4] V P Deviprasad, H Ghadi, D Das et al. High performance short wave infrared photodetector using p –i –p quantum dots (InAs/GaAs) validated with theoretically simulated model. J Alloys Compd, 804, 18(2019).

    [5] O Karni, K J Kuchar, A Capua et al. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers. Appl Phys Lett, 104, 121104(2014).

    [6] Y Ebiko, S Muto, D Suzuki et al. Island size scaling in InAs/GaAs self-assembled quantum dots. Phys Rev Lett, 80, 2650(1998).

    [7] Z Y Zhang, R A Hogg, X Q Lv et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2, 201(2010).

    [8] Z Z Sun, D Ding, Q Gong et al. Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum. Opt Quantum Electron, 31, 1235(1999).

    [9] N Ozaki, K Takeuchi, S Ohkouchi et al. Monolithically grown multi-color InAs quantum dots as a spectral-shape-controllable near-infrared broadband light source. Appl Phys Lett, 103, 051121(2013).

    [10] W Li, S Chen, J Wu et al. The effect of post-growth rapid thermal annealing on InAs/InGaAs dot-in-a-well structure monolithically grown on Si. J Appl Phys, 125, 135301(2019).

    [11] S Sengupta, N Halder, S. Chakrabarti. Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness. Mater Res Bull, 45, 1593(2010).

    [12] M Triki, S Jaziri, R. Bennaceur. Optical transitions of InAs/GaAs quantum dot under annealing process. J Appl Phys, 111, 104304(2012).

    [13] S Saravanan, T. Harayama. Improvement in size distribution and optical properties of InAs/GaAs QDs by post growth thermal treatment. Phys Status Solidi B, 246, 725(2009).

    [14] S Adhikary, S. Chakrabarti. A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping. Mater Res Bull, 47, 3317(2012).

    [15] S Adhikary, S. Chakrabarti. Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer. Thin Solid Films, 552, 146(2014).

    [16] H S Djie, D N Wang, B S Ooi et al. Emission wavelength trimming of self-assembled InGaAs/GaAs quantum dots with GaAs/AlGaAs superlattices by rapid thermal annealing. Thin Solid Films, 515, 4344(2007).

    [17] M Rossetti, L Li, A Markus et al. Characterization and modeling of broad spectrum InAs–GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm. IEEE J Quantum Electron, 43, 676(2007).

    [18] U H Lee, Y D Jang, H Lee et al. The energy level spacing between the ground and first excited states in InAs/GaAs quantum dots as a measure of the zero dimensionality. Physica E, 17, 129(2003).

    [19] K Ghosh, S Kundu, N Halder et al. Annealing of In0.45Ga0.55As/ GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices. Solid State Commun, 151, 1394(2011).

    [20] J S Kim, J H Lee, S U Hong et al. Structural and optical properties of shape-engineered InAs quantum dots. J Appl Phys, 94, 2486(2003).

    [21] A Agarwal, M Srujan, S Chakrabarti et al. Investigation of thermal interdiffusion in InAs/In0.15Ga0.85As/GaAs quantum dot-in-a-well heterostructures. J Lumin, 143, 96(2013).

    [22] S Shah, K Ghosh, S Jejurikar et al. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature. Mater Res Bull, 48, 2933(2013).

    [23] W Lei, Y H Chen, Y L Wang et al. Influence of rapid thermal annealing on InAs/InAlAs/InP quantum wires with different InAs deposited thickness. J Cryst Growth, 284, 20(2005).

    [24] A Babiński, J Jasiński, R Bożek et al. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl Phys Lett, 79, 2576(2001).

    Dandan Ning, Yanan Chen, Xinkun Li, Dechun Liang, Shufang Ma, Peng Jin, Zhanguo Wang. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots[J]. Journal of Semiconductors, 2020, 41(12): 122101
    Download Citation