• Chinese Optics Letters
  • Vol. 22, Issue 2, 022702 (2024)
Rui-Rui Li1、2, Wei-Ran Ye1、2, Yi-Long Chen1、2, Shu-Qian Chen1、2, Wen-Hao Qi1、2, Jin-Ming Cui1、2、3, Yun-Feng Huang1、2、3、*, Chuan-Feng Li1、2、3, and Guang-Can Guo1、2、3
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202422.022702 Cite this Article Set citation alerts
    Rui-Rui Li, Wei-Ran Ye, Yi-Long Chen, Shu-Qian Chen, Wen-Hao Qi, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo. Generation of visible Raman operation laser by a fiber electro-optical modulator feedback loop[J]. Chinese Optics Letters, 2024, 22(2): 022702 Copy Citation Text show less
    References

    [1] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314(2009).

    [2] T. Uehara, K. Tsuji, K. Hagiwara et al. Optical beat-note frequency stabilization between two lasers using a radio frequency interferometer in the gigahertz frequency band. Opt. Eng., 53, 124109(2014).

    [3] W. Ren, J. Sun, P. Hou et al. Direct phase control method for binary phase-shift keying space coherent laser communication. Chin. Opt. Lett., 20, 060601(2022).

    [4] X. Liu, J. Hu, Q. Bian et al. Recent advances in optical injection locking for visible light communication applications. Photonics, 10, 291(2023).

    [5] J. Vanier. Atomic clocks based on coherent population trapping: a review. Appl. Phys. B, 81, 421(2005).

    [6] Z. Wang. Review of chip-scale atomic clocks based on coherent population trapping. Chinese Phys. B, 23, 030601(2014).

    [7] S. Knappe, V. Shah, P. D. D. Schwindt et al. A microfabricated atomic clock. Appl. Phys. Lett., 85, 1460(2004).

    [8] Z.-K. Hu, B.-L. Sun, X.-C. Duan et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A, 88, 043610(2013).

    [9] S.-K. Wang, Y. Zhao, W. Zhuang et al. Shift evaluation of the atomic gravimeter NIM-AGRb-1 and its comparison with FG5X. Metrologia, 55, 360(2018).

    [10] Y. Bidel, O. Carraz, R. Charrière et al. Compact cold atom gravimeter for field applications. Appl. Phys. Lett., 102, 144107(2013).

    [11] A. Peters, K.-Y. Chung, S. Chu. Measurement of gravitational acceleration by dropping atoms. Nature, 400, 849(1999).

    [12] R. H. Parker, C. Yu, W. Zhong et al. Measurement of the fine-structure constant as a test of the standard model. Science, 360, 191(2018).

    [13] I. Dutta, D. Savoie, B. Fang et al. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys. Rev. Lett., 116, 183003(2016).

    [14] C. M. Seck, M. G. Kokish, M. R. Dietrich et al. Raman sideband cooling of a 138Ba+ ion using a Zeeman interval. Phys. Rev. A, 93, 053415(2016).

    [15] V. M. Porozova, L. V. Gerasimov, I. B. Bobrov et al. Raman sideband cooling of a single atom in an optical dipole trap: toward a theoretical optimum in a three-dimensional regime. Phys. Rev. A, 99, 043406(2019).

    [16] L. Zhu, Y.-H. Lien, A. Hinton et al. Application of optical single-sideband laser in Raman atom interferometry. Opt. Express, 26, 6542(2018).

    [17] G. Wang, Y. Wang, K. Ying et al. Robust single-sideband-modulated Raman light generation for atom interferometry by FBG-based optical rectangular filtration. Opt. Express, 30, 28658(2022).

    [18] J. Mielke, J. Pick, J. A. Coenders et al. 139 GHz UV phase-locked Raman laser system for thermometry and sideband cooling of 9Be+ ions in a Penning trap. J. Phys. B, 54, 195402(2021).

    [19] D. Hayes, D. N. Matsukevich, P. Maunz et al. Entanglement of atomic qubits using an optical frequency comb. Phys. Rev. Lett., 104, 140501(2019).

    [20] J. Mizrahi, C. Senko, B. Neyenhuis et al. Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett., 110, 203001(2013).

    [21] Y. Zhao, S. Wang, W. Zhuang et al. Raman-laser system for absolute gravimeter based on 87Rb atom interferometer. Photonics, 7, 32(2020).

    [22] P. Cheinet, F. Pereira Dos Santos, T. Petelski et al. Compact laser system for atom interferometry. Appl. Phys. B, 84, 643(2006).

    [23] S. Lu, Y. Zhou, F. Zhu et al. Digital-analog hybrid optical phase-lock loop for optical quadrature phase-shift keying. Chin. Opt. Lett., 18, 090602(2020).

    [24] C. Wei, S. Yan, A. Jia et al. Compact phase-lock loop for external cavity diode lasers. Chin. Opt. Lett., 14, 051403(2016).

    [25] A. C. Bordonalli, C. Walton, A. J. Seeds. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop. J. Light. Technol., 17, 328(1999).

    [26] P. J. Lee, B. B. Blinov, K. Brickman et al. Atomic qubit manipulations with an electro-optic modulator. Opt. Lett., 28, 1582(2003).

    [27] Q. Luo, H. Zhang, K. Zhang et al. A compact laser system for a portable atom interferometry gravimeter. Rev. Sci. Instrum., 90, 043104(2019).

    [28] S.-W. Chiow, N. Yu. Compact atom interferometer using single laser. Appl. Phys. B, 124, 96(2018).

    [29] R.-R. Li, R. He, J.-M. Cui et al. A versatile multi-tone laser system for manipulating atomic qubits based on a fiber Mach–Zehnder modulator and second harmonic generation. Opt. Express, 30, 30098(2022).

    [30] S. Olmschenk, K. C. Younge, D. L. Moehring et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A, 76, 052314(2007).

    [31] E. D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys., 69, 79(2001).

    Rui-Rui Li, Wei-Ran Ye, Yi-Long Chen, Shu-Qian Chen, Wen-Hao Qi, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo. Generation of visible Raman operation laser by a fiber electro-optical modulator feedback loop[J]. Chinese Optics Letters, 2024, 22(2): 022702
    Download Citation