• Advanced Photonics
  • Vol. 1, Issue 1, 016004 (2019)
Zhenbo Ren1、2, Zhimin Xu3, and Edmund Y. Lam1、*
Author Affiliations
  • 1University of Hong Kong, Department of Electrical and Electronic Engineering, Pokfulam, Hong Kong, China
  • 2Northwestern Polytechnical University, School of Natural and Applied Sciences, Xi’an, China
  • 3SharpSight Limited, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.1.1.016004 Cite this Article Set citation alerts
    Zhenbo Ren, Zhimin Xu, Edmund Y. Lam. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 2019, 1(1): 016004 Copy Citation Text show less
    References

    [1] D. Gabor. A new microscopic principle. Nature, 161, 777-778(1948).

    [2] U. Schnars et al. Digital Holography and Wavefront Sensing(2015).

    [3] A. C. Chan, K. K. Tsia, E. Y. Lam. Subsampled scanning holographic imaging (SuSHI) for fast, non-adaptive recording of three-dimensional objects. Optica, 3, 911-917(2016).

    [4] F. Merola et al. Tomographic flow cytometry by digital holography. Light Sci. Appl., 6, e16241(2017).

    [5] Y. Wu et al. Air quality monitoring using mobile microscopy and machine learning. Light Sci. Appl., 6, e17046(2017).

    [6] E. Cuche, P. Marquet, C. Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt., 38, 6994-7001(1999).

    [7] Y. Pourvais et al. Microstructural surface characterization of stainless and plain carbon steel using digital holographic microscopy. J. Opt. Soc. Am. B, 34, B36-B41(2017).

    [8] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [9] P. Picart, J. Leval. General theoretical formulation of image formation in digital Fresnel holography. J. Opt. Soc. Am. A, 25, 1744-1761(2008).

    [10] J. W. Goodman. Introduction to Fourier Optics(2017).

    [11] T. M. Kreis, M. Adams, W. P. Jüptner. Methods of digital holography: a comparison. Proc. SPIE, 3098, 224-233(1997).

    [12] D. J. Brady et al. Compressive holography. Opt. Express, 17, 13040-13049(2009).

    [13] Z. Ren, N. Chen, E. Y. Lam. Automatic focusing for multisectional objects in digital holography using the structure tensor. Opt. Lett., 42, 1720-1723(2017).

    [14] H. A. Ilhan, M. Doğar, M. Özcan. Digital holographic microscopy and focusing methods based on image sharpness. J. Microsc., 255, 138-149(2014).

    [15] I. Yamaguchi, T. Zhang. Phase-shifting digital holography. Opt. Lett., 22, 1268-1270(1997).

    [16] E. Cuche, P. Marquet, C. Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt., 39, 4070-4075(2000).

    [17] T. Colomb et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express, 14, 4300-4306(2006).

    [18] D. C. Ghiglia, L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A, 11, 107-117(1994).

    [19] R. M. Goldstein, H. A. Zebker, C. L. Werner. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci., 23, 713-720(1988).

    [20] M. Zhao et al. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl. Opt., 50, 6214-6224(2011).

    [21] D. C. Ghiglia, M. D. Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, 4(1998).

    [22] D. Parshall, M. K. Kim. Digital holographic microscopy with dual-wavelength phase unwrapping. Appl. Opt., 45, 451-459(2006).

    [23] W. Qu et al. Digital holographic microscopy with physical phase compensation. Opt. Lett., 34, 1276-1278(2009).

    [24] L. Miccio et al. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram. Appl. Phys. Lett., 90, 041104(2007).

    [25] C. Zuo et al. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Opt. Lett., 38, 1724-1726(2013).

    [26] Z. Ren, N. Chen, E. Y. Lam. Extended focused imaging and depth map reconstruction in optical scanning holography. Appl. Opt., 55, 1040-1047(2016).

    [27] P. Ferraro et al. Extended focused image in microscopy by digital holography. Opt. Express, 13, 6738-6749(2005).

    [28] X. Zhang, E. Y. Lam, T.-C. Poon. Reconstruction of sectional images in holography using inverse imaging. Opt. Express, 16, 17215-17226(2008).

    [29] M. K. Kim. Wavelength-scanning digital interference holography for optical section imaging. Opt. Lett., 24, 1693-1695(1999).

    [30] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [31] D. Shen, G. Wu, H.-I. Suk. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 19, 221-248(2017).

    [32] T. Nguyen et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Opt. Express, 25, 15043-15057(2017).

    [33] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [34] Y. Wu et al. Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery. Optica, 5, 704-710(2018).

    [35] Y. Zhang et al. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett., 42, 3824-3827(2017).

    [36] Z. Ren, Z. Xu, E. Y. Lam. Autofocusing in digital holography using deep learning. Proc. SPIE, 10499, 104991V(2018).

    [37] Z. Ren, Z. Xu, E. Y. Lam. Learning-based nonparametric autofocusing for digital holography. Optica, 5, 337-344(2018).

    [38] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst., 2, 303-314(1989).

    [39] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [40] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    [41] W. Shi et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874-1883(2016).

    [42] Z. Wang et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [43] J. Bioucas-Dias et al. Absolute phase estimation: adaptive local denoising and global unwrapping. Appl. Opt., 47, 5358-5369(2008).

    [44] A. Anand et al. Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics J., 4, 1456-1464(2012).

    [45] M. A. Schulze et al. Semiconductor wafer defect detection using digital holography. Proc. SPIE, 5041, 183-193(2003).

    [46] M. Mir et al. Quantitative phase imaging. Prog. Opt., 57, 133-217(2012).

    CLP Journals

    [1] Hang LIU, Yong-liang XIAO, Jun-long TIAN, Hong-xing LI, Jian-xin ZHONG. Nonlinear Reconstruction for Off-axis Fresnel Digital Holography with Deep Learning[J]. Acta Photonica Sinica, 2020, 49(7): 709001

    [2] Shuo Zhu, Enlai Guo, Jie Gu, Lianfa Bai, Jing Han. Imaging through unknown scattering media based on physics-informed learning[J]. Photonics Research, 2021, 9(5): B210

    Zhenbo Ren, Zhimin Xu, Edmund Y. Lam. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 2019, 1(1): 016004
    Download Citation