• Photonics Research
  • Vol. 11, Issue 4, 631 (2023)
Huanhao Li1、2、†, Zhipeng Yu1、2、†, Qi Zhao1、2、†, Yunqi Luo3, Shengfu Cheng1、2, Tianting Zhong1、2, Chi Man Woo1、2, Honglin Liu1、4, Lihong V. Wang5、7、*, Yuanjin Zheng3、8、*, and Puxiang Lai1、2、6、9、*
Author Affiliations
  • 1Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
  • 2Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518063, China
  • 3School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 4Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, USA
  • 6Photonics Research Institute, Hong Kong Polytechnic University, Hong Kong, China
  • 7e-mail: LVW@caltech.edu
  • 8e-mail: yjzheng@ntu.edu.sg
  • 9e-mail: puxiang.lai@polyu.edu.hk
  • show less
    DOI: 10.1364/PRJ.472512 Cite this Article Set citation alerts
    Huanhao Li, Zhipeng Yu, Qi Zhao, Yunqi Luo, Shengfu Cheng, Tianting Zhong, Chi Man Woo, Honglin Liu, Lihong V. Wang, Yuanjin Zheng, Puxiang Lai. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles[J]. Photonics Research, 2023, 11(4): 631 Copy Citation Text show less
    References

    [1] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2015).

    [2] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [3] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [4] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping (PAWS) for enhanced optical focusing in scattering media. Nat. Photonics, 9, 126-132(2015).

    [5] J. Xu, H. W. Ruan, Y. Liu, H. J. Zhou, C. H. Yang. Focusing light through scattering media by transmission matrix inversion. Opt. Express, 25, 27234-27246(2017).

    [6] J.-H. Park, Z. Yu, K. Lee, P. Lai, Y. Park. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photonics, 3, 100901(2018).

    [7] H. Li, C. M. Woo, T. Zhong, Z. Yu, Y. Luo, Y. Zheng, X. Yang, H. Hui, P. Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm. Photonics Res., 9, 202-212(2021).

    [8] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photonics Res., 9, B262-B278(2021).

    [9] Z. Yu, H. Li, T. Zhong, J.-H. Park, S. Cheng, C. M. Woo, Q. Zhao, J. Yao, Y. Zhou, X. Huang, W. Pang, H. Yoon, Y. Shen, H. Liu, Y. Zheng, Y. Park, L. V. Wang, P. Lai. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022).

    [10] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [11] T. Wu, O. Katz, X. Shao, S. Gigan. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis. Opt. Lett., 41, 5003-5006(2016).

    [12] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [13] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, A. P. Mosk. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica, 2, 424-429(2015).

    [14] Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu, F. Dong, C. W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han, C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta, F. Kengara, Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan, M. Luo, Z. Liu, T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang, J. P. Lewis, J. M. Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang, T. Huang, C. Lu, Z. Cai, F. Wang, J. Zhang. Artificial intelligence: a powerful paradigm for scientific research. Innovation, 2, 100179(2021).

    [15] H. Li, Z. Yu, Q. Zhao, T. Zhong, P. Lai. Accelerating deep learning with high energy efficiency: from microchip to physical systems. Innovation, 3, 100252(2022).

    [16] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [17] N. Borhani, E. Kakkava, C. Moser, D. Psaltis. Learning to see through multimode fibers. Optica, 5, 960-966(2018).

    [18] B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018).

    [19] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [20] P. Caramazza, O. Moran, R. Murray-Smith, D. Faccio. Transmission of natural scene images through a multimode fibre. Nat. Commun., 10, 2029(2019).

    [21] Q. Zhao, H. Li, Z. Yu, C. M. Woo, T. Zhong, S. Cheng, Y. Zheng, H. Liu, J. Tian, P. Lai. Speckle-based optical cryptosystem and its application for human face recognition via deep learning. Adv. Sci., 9, e2202407(2022).

    [22] S. Zhu, E. Guo, J. Gu, L. Bai, J. Han. Imaging through unknown scattering media based on physics-informed learning. Photonics Res., 9, B210-B219(2021).

    [23] M. Liao, S. Zheng, S. Pan, D. Lu, W. He, G. Situ, X. Peng. Deep-learning-based ciphertext-only attack on optical double random phase encryption. Opto-Electron. Adv., 4, 200016(2021).

    [24] Z. Zhou, J. Xia, J. Wu, C. Chang, X. Ye, S. Li, B. Du, H. Zhang, G. Tong. Learning-based phase imaging using a low-bit-depth pattern. Photonics Res., 8, 1624-1633(2020).

    [25] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

    [26] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [27] C.-Y. Yang, C. Ma, M.-H. Yang. Single-image super-resolution: a benchmark. European Conference on Computer Vision (ECCV), 372-386(2014).

    [28] Z. Wang, J. Chen, S. C. H. Hoi. Deep Learning for Image Super-Resolution: A Survey(2020).

    [29] H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, A. Ozcan. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).

    [30] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, A. Ozcan. Deep learning microscopy. Optica, 4, 1437-1443(2017).

    [31] J. W. Goodman. Statistical Optics(2015).

    [32] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He. Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1492-1500(2017).

    [33] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1874-1883(2016).

    [34] W. S. Lai, J. B. Huang, N. Ahuja, M. H. Yang. Fast and accurate image super-resolution with deep Laplacian Pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell., 41, 2599-2613(2019).

    [35] M. Pascucci, S. Ganesan, A. Tripathi, O. Katz, V. Emiliani, M. Guillon. Compressive three-dimensional super-resolution microscopy with speckle-saturated fluorescence excitation. Nat. Commun., 10, 1327(2019).

    [36] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, Q. Liao. Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia, 21, 3106-3121(2019).

    [37] S. Cheng, Y. Zhou, J. Chen, H. Li, L. Wang, P. Lai. High-resolution photoacoustic microscopy with deep penetration through learning. Photoacoustics, 25, 100314(2022).

    Huanhao Li, Zhipeng Yu, Qi Zhao, Yunqi Luo, Shengfu Cheng, Tianting Zhong, Chi Man Woo, Honglin Liu, Lihong V. Wang, Yuanjin Zheng, Puxiang Lai. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles[J]. Photonics Research, 2023, 11(4): 631
    Download Citation