• Journal of Inorganic Materials
  • Vol. 37, Issue 11, 1181 (2022)
Weiyan LEI1, Yue WANG2, Shiran WU2, Dongxin SHI2, Yi SHEN1、2、*, and Fengfeng LI2
Author Affiliations
  • 11. School of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
  • 22. Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
  • show less
    DOI: 10.15541/jim20220089 Cite this Article
    Weiyan LEI, Yue WANG, Shiran WU, Dongxin SHI, Yi SHEN, Fengfeng LI. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields[J]. Journal of Inorganic Materials, 2022, 37(11): 1181 Copy Citation Text show less
    References

    [1] H HUANG, W FENG, Y CHEN. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 11381-11485(2021).

    [2] C WANG, Y ZHAN, Z WANG. TiO2, MoS2, and TiO2/MoS2 heterostructures for use in organic dyes degradation. ChemistrySelect, 1713-1718(2018).

    [3] B LIANG, W ZHANG. BN nanosheet modified SnO materials for enhancing photocatalytic properties. International Journal of Materials Research, 177-182(2020).

    [4] S F DUAN, C L TAO, Y Y GENG et al. Phosphorus-doped isotype g-C3N4/g-C3N4: an efficient charge transfer system for photoelectrochemical water oxidation. ChemCatChem, 729-736(2019).

    [5] W LI, D LIU, N YANG et al. Molybdenum diselenide-black phosphorus heterostructures for electrocatalytic hydrogen evolution. Applied Surface Science(2019).

    [6] Q WU, G CHEN, K GONG et al. MnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapy. Matter, 496-512(2019).

    [7] H HUANG, Q XIAO, J WANG et al. Black phosphorus: a two- dimensional reductant for in situ nanofabrication. npj 2D Materials and Applications(2017).

    [8] D JANA, S R JIA, A K BINDRA et al. Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Applied Materials & Interfaces, 18342-18351(2020).

    [9] F QI, P JI, Z CHEN et al. Photosynthetic cyanobacteria-hybridized black phosphorus nanosheets for enhanced tumor photodynamic therapy. Small, 2102113-9(2021).

    [10] J LIU, K YI, Q ZHANG et al. Strong penetration-induced effective photothermal therapy by exosome-mediated black phosphorus quantum dots. Small, 2104585-9(2021).

    [11] J OUYANG, C FENG, X ZHANG et al. Black phosphorus in biological applications: evolutionary journey from monoelemental materials to composite materials. Accounts of Materials Research, 489-500(2021).

    [12] N M LATIFF, C C MAYORGA-MARTINEZ, Z SOFER et al. Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today(2018).

    [13] N M LATIFF, W Z TEO, Z SOFER et al. The cytotoxicity of layered black phosphorus. Chemistry-a European Journal, 13991-13995(2015).

    [14] Q LI, H HUANG, Z CHEN et al. Thickness-dependent structural stability and anisotropy of black phosphorus. Advanced Electronic Materials, 1800712-5(2019).

    [15] Y ZHAO, H WANG, H HUANG et al. Surface coordination of black phosphorus for robust air and water stability. Angewandte Chemie International Edition, 5003-5007(2016).

    [16] J KIM, S K BAEK, K S KIM et al. Long-term stability study of graphene-passivated black phosphorus under air exposure. Current Applied Physics, 165-169(2016).

    [17] H L CHIA, N M LATIFF, R GUSMAO et al. Cytotoxicity of shear exfoliated pnictogen (As, Sb, Bi) nanosheets. Chemistry-a European Journal, 2242-2249(2019).

    [18] W ZHOU, T PAN, H CUI et al. Black phosphorus: bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angewandte Chemie-International Edition, 769-774(2019).

    [19] G QU, T XIA, W ZHOU et al. Property-activity relationship of black phosphorus at the nano-bio interface: from molecules to organisms. Chemical Reviews, 2288-2346(2020).

    [20] T XUE, W LIANG, Y LI et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nature Communications(2019).

    [21] N DENG, H TIAN, J ZHANG et al. Black phosphorus junctions and their electrical and optoelectronic applications. Journal of Semiconductors, 081001-13(2021).

    [22] R HAN, S FENG, D SUN et al. Properties and photodetector applications of two-dimensional black arsenic phosphorus and black phosphorus. Science China-Information Sciences, 140402-14(2021).

    [23] L ZHOU, C LIU, Z SUN et al. Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosensors & Bioelectronics(2019).

    [24] A SRIVASTAVA, A VERMA, R DAS et al. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik, 203: 163430(2020).

    [25] M SU, X CHEN, L TANG et al. Black phosphorus (BP)-graphene guided-wave surface plasmon resonance (GWSPR) biosensor. Nanophotonics, 4265-4272(2020).

    [26] F PENG, F ZHAO, L SHAN et al. Black phosphorus nanosheets- based platform for targeted chemo-photothermal synergistic cancer therapy. Colloids and Surfaces B-Biointerfaces(2021).

    [27] I AKSOY, H KUCUKKECECI, F SEVGI et al. Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Applied Materials & Interfaces, 26822-26831(2020).

    [28] D ZHANG, H M LIU, X SHU et al. Nanocopper-loaded black phosphorus nanocomposites for efficient synergistic antibacterial application. Journal of Hazardous Materials(2020).

    [29] W LIU, Y ZHU, Q LIU et al. 2D black phosphorus-based cytomembrane mimics with stimuli-responsive antibacterial action inspired by endotoxin-associated toxic behavior. ACS Applied Materials & Interfaces, 43820-43829(2021).

    [30] Y JING, Q TANG, P HE et al. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology, 095201-9(2015).

    [31] F XIA, H WANG, Y JIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications(2014).

    [32] J QIAO, X KONG, Z HU et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications(2014).

    [33] Q WEI, X PENG. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 251915-5(2014).

    [34] F XU, H MA, S LEI et al. In situ TEM visualization of superior nanomechanical flexibility of shear-exfoliated phosphorene. Nanoscale, 13603-13610(2016).

    [35] H Y LV, W J LU, D F SHAO et al. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B, 085433-8(2014).

    [36] R FEI, A FAGHANINIA, R SOKLASKI et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 6393-6399(2014).

    [37] M EZAWA. Topological origin of quasi-flat edge band in phosphorene. New Journal of Physics(2014).

    [38] G SANSONE, L MASCHIO, D USVYAT et al. Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. Journal of Physical Chemistry Letters, 131-136(2016).

    [39] L SHULENBURGER, A D BACZEWSKI, Z ZHU et al. The nature of the inter layer interaction in bulk and few-layer phosphorus. Nano Letters, 8170-8175(2015).

    [40] S APPALAKONDAIAH, G VAITHEESWARAN, S LEBEGUE et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review B, 035105-9(2012).

    [41] J KANG, S A WELLS, J D WOOD et al. Stable aqueous dispersions of optically and electronically active phosphorene. Proceeding of The National Academy of Sciences of The United States of America, 11688-11693(2016).

    [42] Z TAN, Y YIN, X GUO et al. Natural organic matter inhibits aggregation of few-layered black phosphorus in mono- and divalent-electrolyte solutions. Environmental Science-Nano, 599-609(2019).

    [43] A CASTELLANOS-GOMEZ, L VICARELLI, E PRADA et al. Isolation and characterization of few-layer black phosphorus. 2D Materials, 025001(2014).

    [44] H LIU, A T NEAL, Z ZHU et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 4033-4041(2014).

    [45] Z GUO, H ZHANG, S LU et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Advanced Functional Materials, 6996-7002(2015).

    [46] K YAN, H W LEE, T GAO et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Letters, 6016-1022(2014).

    [47] X ZHANG, H XIE, Z LIU et al. Black phosphorus quantum dots. Angewandte Chemie International Edition, 3653-3657(2015).

    [48] J D WOOD, S A WELLS, D JARIWALA et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 6964-6970(2014).

    [49] J KANG, J D WOOD, S A WELLS et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 3596-3604(2015).

    [50] M BATMUNKH, M BAT-ERDENE, J G SHAPTER. Phosphorene and phosphorene-based materials-prospects for future applications. Advanced Materials, 8586-8617(2016).

    [51] D HANLON, C BACKES, E DOHERTY et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications(2015).

    [52] J SHAO, H XIE, H HUANG et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications(2016).

    [53] M WANG, Y LIANG, Y LIU et al. Ultrasmall black phosphorus quantum dots: synthesis, characterization, and application in cancer treatment. Analyst, 5822-5833(2018).

    [54] V KUMAR, J R BRENT, M SHORIE et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Applied Materials & Interfaces, 22860-22868(2016).

    [55] B WAN, B YANG, Y WANG et al. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnology, 435702-6(2015).

    [56] L ZHANG, G OUYANG. Size-dependent interface thermal conductance in black phosphorus/SiO2 heterojunctions. Journal of Physics D-Applied Physics, 025302-19(2019).

    [57] A ABDERRAHMANE, C WOO, P J KO. Black phosphorus/ molybdenum diselenide heterojunction-based photodetector. Journal of Electronic Materials, 5713-5720(2021).

    [58] G RUBIO-BOLLINGER, R GUERRERO, LARA D P DE et al. Enhanced visibility of MoS2, MoSe2, WSe2 and black-phosphorus: making optical identification of 2D semiconductors easier. Electronics, 847-856(2015).

    [59] X JIANG, M ZHANG, L LIU et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction. Nanophotonics, 2487-2493(2020).

    [60] J ZHU, J ZHANG, S XU et al. Unintentional doping effects in black phosphorus by native vacancies in h-BN supporting layer. Applied Surface Science(2017).

    [61] A AVSAR, J Y TAN, X LUO et al. van der Waals bonded Co/h- BN contacts to ultrathin black phosphorus devices. Nano Letters, 5361-5367(2017).

    [62] Y CHEN, R REN, H PU et al. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosensors & Bioelectronics(2017).

    [63] S ZHANG, S GUO, Z CHEN et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 982-1021(2018).

    [64] Y HU, J LIANG, Y XIA et al. 2D arsenene and arsenic materials: fundamental properties, preparation, and applications. Small(2022).

    [65] W TAO, N KONG, X JI et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2891-2912(2019).

    [66] P ARES, J J PALACIOS, G ABELLAN et al. Recent progress on antimonene: a new bidimensional material. Advanced Materials, 1703771-27(2018).

    [67] C LIU, S SUN, Q FENG et al. Arsenene nanodots with selective killing effects and their low-dose combination with ss-elemene for cancer therapy. Advanced Materials, 2102054-14(2021).

    [68] W TAO, X JI, X XU et al. Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angewandte Chemie International Edition, 11896-11900(2017).

    [69] C LIU, J SHIN, S SON et al. Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chemical Society Reviews, 2260-2279(2021).

    [70] Y WANG, W FENG, M CHANG et al. Engineering 2D multifunctional ultrathin bismuthene for multiple photonic nanomedicine. Advanced Functional Materials, 2005093-12(2021).

    Weiyan LEI, Yue WANG, Shiran WU, Dongxin SHI, Yi SHEN, Fengfeng LI. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields[J]. Journal of Inorganic Materials, 2022, 37(11): 1181
    Download Citation