• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0251218 (2022)
Shixian SHE, Ye ZHANG, Zhiwei HUANG, Jinrong ZHOU, and Shaoying KE*
Author Affiliations
  • College of Physics and Information Engineering,Minnan Normal University,Zhangzhou,Fujian 363000,China
  • show less
    DOI: 10.3788/gzxb20225102.0251218 Cite this Article
    Shixian SHE, Ye ZHANG, Zhiwei HUANG, Jinrong ZHOU, Shaoying KE. Effect of the Thickness of the a-Si Bonding Layer at InGaAs/Si Bonded Interface on the Performance of InGaAs/Si Avalanche Photodiode[J]. Acta Photonica Sinica, 2022, 51(2): 0251218 Copy Citation Text show less
    References

    [1] G J FAN YUAN, J TENG, S WANG et al. Optimizing single-photon avalanche photodiodes for dynamic quantum key distribution networks. Physical Review Applied, 13, 054027(2020).

    [2] F BOUCHARD, D ENGLAND, P J BUSTARD et al. Achieving ultimate noise tolerance in quantum communication. Physical Review Applied, 15, 024027(2021).

    [3] K PASQUINELLI, R LUSSANA, S TISA et al. Single-photon detectors modeling and selection criteria for high-background LiDAR. IEEE Sensors Journal, 20, 7021-7032(2020).

    [4] S M PERSHIN, A L SOBISEVICH, M Y GRISHIN et al. Volcanic activity monitoring by unique LIDAR based on a diode laser. Laser Physics Letters, 17, 115607(2020).

    [5] P REHAIN, Y M SUA, S ZHU et al. Noise-tolerant single photon sensitive three-dimensional imager. Nature Communications, 11, 1-7(2020).

    [6] Q CAI, W LUO, R YUAN et al. Back-illuminated AlGaN heterostructure solar-blind avalanche photodiodes with one-dimensional photonic crystal filter. Optics Express, 28, 6027-6035(2020).

    [7] Y LI, L YE, X LIU et al. A full CMOS quenching circuit with fuse protection for InGaAs/InP single photon detectors. IEEE Transactions on Circuits and Systems II: Express Briefs, 68, 3224-3228(2021).

    [8] S H KODATI, S LEE, B GUO et al. AlInAsSb avalanche photodiodes on InP substrates. Applied Physics Letters, 118, 091101(2021).

    [9] J LIU, Y XU, Y LI et al. Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching. Optics Express, 29, 10150-10161(2021).

    [10] S MOHAMMADNEJAD, F AGHAEI. Noise characteristics improvement of submicron InP/InGaAs avalanche photodiode for laser detection system. Optics Communications, 455, 124561(2020).

    [11] J J LIU, W J HO, J Y CHEN et al. The fabrication and characterization of InAlAs/InGaAs APDs based on a mesa-structure with polyimide passivation. Sensors, 19, 3399(2019).

    [12] B FRÖHLICH, M LUCAMARINI, J F DYNES et al. Long-distance quantum key distribution secure against coherent attacks. Optica, 4, 163-167(2017).

    [13] Z PAN, M BITTER, A PAUCHARD et al. InGaAs-Si avalanche photodiodes fabricated by wafer bonding, 4905, 322-325(2002).

    [14] M BITTER, Z PAN, S KRISTJANSSON et al. InGaAs-on-Si photodetectors for high-sensitivity detection, 5406, 1-12(2004).

    [15] N LI, R SIDHU, X LI et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Applied Physics Letters, 82, 2175-2177(2003).

    [16] R WANG, X YANG, H WANG et al. High-speed InGaAs/InAlAs avalanche photodiode with low dark current, 1-3(2020).

    [17] H PENG, Y XU, W ZHENG. The research of InSb on Si avalanche photodiode, 11334, 113340E(2019).

    [18] H PENG, H QU, W ZHENG. A promising low noise and high gain InGaAs/Si avalanche photodiode, 11564, 1156407(2020).

    [19] J Ø KJELLMAN, T TANEMURA, M SUGIYAMA et al. Monolithic InGaAs-on-Si micro-disk ensemble LED with peak luminescence at1.58 μm, 1-3(2014).

    [20] Z HUANG, C LI, D LIANG et al. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 3, 793-798(2016).

    [21] D DAI, J E BOWERS, Z LU et al. Temperature dependence of Ge/Si avalanche photodiodes, 231-232(2010).

    [22] C MERCKLING. Monolithic integration of InGaAs on Si (001) substrate for logic devices. High Mobility Materials for CMOS Applications, 71-114(2018).

    [23] A R HAWKINS, T E REYNOLDS, D R ENGLAND et al. Silicon heterointerface photodetector. Applied Physics Letters, 68, 3692-3694(1996).

    [24] B F LEVINE, C J PINZONE, S HUI et al. Ultralow-dark-current wafer-bonded Si/InGaAs photodetectors. Applied Physics Letters, 75, 2141-2143(1999).

    [25] N HONG, R J CHU, S S KANG et al. Flexible GaAs photodetector arrays hetero-epitaxially grown on GaP/Si for a low-cost III-V wearable photonics platform. Optics Express, 28, 36559-36567(2020).

    [26] Y H JHANG, K TANABE, S IWAMOTO et al. InAs/GaAs quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding. IEEE Photonics Technology Letters, 27, 875-878(2015).

    [27] S UVIN, S KUMARI, A DE GROOTE et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Optics Express, 26, 18302-18309(2018).

    [28] B BOUANANI, A JOTI, F S B BOUIADJRA et al. Band gap and thickness optimization for improvement of CIGS/CIGS tandem solar cells using Silvaco software. Optik, 204, 164217(2020).

    [29] M KHAOUANI, H BENCHERIF, Z KOURDI et al. An ultrafast multi-layer Graphene/InGaAs/InAlAs/InAs PIN photodetector with 100 GHz bandwidth. Optik, 227, 165429(2021).

    [30] D ATTAFI, A MEFTAH, R BOUMARAF et al. Enhancement of silicon solar cell performance by introducing selected defects in the SiO2 passivation layer. Optik, 229, 166206(2021).

    [31] S SELBERHERR. Analysis and simulation of semiconductor devices. Springer Science & Business(1984).

    [32] J L PADILLA, L KNOLL, F GÁMIZ et al. Simulation of fabricated 20-nm Schottky barrier MOSFETs on SOI: Impact of barrier lowering. IEEE Transactions on Electron Devices, 59, 1320-1327(2012).

    [33] M J POWELL, S C DEANE. Improved defect-pool model for charged defects in amorphous silicon. Physical Review B, 48, 10815(1993).

    Shixian SHE, Ye ZHANG, Zhiwei HUANG, Jinrong ZHOU, Shaoying KE. Effect of the Thickness of the a-Si Bonding Layer at InGaAs/Si Bonded Interface on the Performance of InGaAs/Si Avalanche Photodiode[J]. Acta Photonica Sinica, 2022, 51(2): 0251218
    Download Citation