• Photonics Research
  • Vol. 8, Issue 9, 1506 (2020)
Yu Han1、2, Zhiguang Liu3, Shanshan Chen1, Juan Liu2、4、*, Yongtian Wang2, and Jiafang Li1、3、5、*
Author Affiliations
  • 1Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 4e-mail: juanliu@bit.edu.cn
  • 5e-mail: jiafangli@bit.edu.cn
  • show less
    DOI: 10.1364/PRJ.398467 Cite this Article Set citation alerts
    Yu Han, Zhiguang Liu, Shanshan Chen, Juan Liu, Yongtian Wang, Jiafang Li. Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation[J]. Photonics Research, 2020, 8(9): 1506 Copy Citation Text show less
    References

    [1] R. Syms, E. Yeatman. Self-assembly of three-dimensional microstructures using rotation by surface tension forces. Electron. Lett., 29, 662-664(1993).

    [2] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. D. Zhang, S. R. Marder, J. W. Perry. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater., 14, 194-198(2002).

    [3] F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, E. Di Fabrizio. Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale, 3, 2689-2696(2011).

    [4] Y. Hong, D. Zhao, D. L. Liu, B. Z. Ma, G. N. Yao, Q. Li, A. P. Han, M. Qiu. Three-dimensional in situ electron-beam lithography using water ice. Nano Lett., 18, 5036-5041(2018).

    [5] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513-1515(2009).

    [6] S. Chen, J. Chen, X. Zhang, Z.-Y. Li, J. Li. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with ‘folding’. Light Sci. Appl., 9, 75(2020).

    [7] J. Rogers, Y. G. Huang, O. G. Schmidt, D. H. Gracias. Origami MEMS and NEMS. Mrs Bull., 41, 123-129(2016).

    [8] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A, 419, 131-137(2006).

    [9] C. Yang, H. Zhang, Y. D. Liu, Z. L. Yu, X. D. Wei, Y. F. Hu. Kirigami-inspired deformable 3D structures conformable to curved biological surface. Adv. Sci., 5, 1801070(2018).

    [10] A. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, M. Shtein. Dynamic kirigami structures for integrated solar tracking. Nat. Commun., 6, 8092(2015).

    [11] M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, P. L. McEuen. Graphene kirigami. Nature, 524, 204-207(2015).

    [12] Z. J. Wang, L. Q. Jing, K. Yao, Y. H. Yang, B. Zheng, C. M. Soukoulis, H. S. Chen, Y. M. Liu. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater., 29, 1700412(2017).

    [13] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, I. Cohen. Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 345, 647-650(2014).

    [14] Y. S. Guan, Z. L. Zhang, Y. C. Tang, J. Yin, S. Q. Ren. Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv. Mater., 30, 1801070(2018).

    [15] L. Z. Xu, T. C. Shyu, N. A. Kotov. Origami and kirigami nanocomposites. ACS Nano, 11, 7587-7599(2017).

    [16] W. J. Choi, G. Cheng, Z. Y. Huang, S. Zhang, T. B. Norris, N. A. Kotov. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater., 18, 820-826(2019).

    [17] M. D. Turner, M. Saba, Q. M. Zhang, B. P. Cumming, G. E. Schroder-Turk, M. Gu. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photonics, 7, 801-805(2013).

    [18] C. Q. Zheng, Y. Shen, M. K. Liu, W. J. Liu, S. Y. Wu, C. J. Jin. Layer-by-layer assembly of three dimensional optical functional nanostructures. ACS Nano, 13, 5583-5590(2019).

    [19] Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, N. X. Fang. Nano-kirigami with giant optical chirality. Sci. Adv., 4, eaat4436(2018).

    [20] A. J. Cui, Z. Liu, J. F. Li, T. H. H. Shen, X. X. Xia, Z. Y. Li, Z. J. Gong, H. Q. Li, B. L. Wang, J. J. Li, H. F. Yang, W. X. Li, C. Z. Gu. Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances. Light Sci. Appl., 4, e308(2015).

    [21] M. L. Tseng, Z. H. Lin, H. Y. Kuo, T. T. Huang, Y. T. Huang, T. L. Chung, C. H. Chu, J. S. Huang, D. P. Tsai. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Opt. Mater., 7, 1900617(2019).

    [22] W. J. Arora, H. I. Smith, G. Barbastathis. Membrane folding by ion implantation induced stress to fabricate three-dimensional nanostructures. Microelectron. Eng., 84, 1454-1458(2007).

    [23] C. L. Wu, F. C. Li, C. W. Pao, D. J. Srolovitz. Folding sheets with ion beams. Nano Lett., 17, 249-254(2017).

    [24] W. D. Nix, B. M. Clemens. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J. Mater. Res., 14, 3467-3473(1999).

    [25] M. J. Samayoa, M. A. Haque, P. H. Cohen. Focused ion beam irradiation effects on nanoscale freestanding thin films. J. Micromech. Microeng., 18, 095005(2008).

    [26] A. Battiato, M. Lorusso, E. Bernardi, F. Picollo, F. Bosia, D. Ugues, A. Zelferino, A. Damin, J. Baima, N. M. Pugno, E. P. Ambrosio, P. Olivero. Softening the ultra-stiff: controlled variation of Young’s modulus in single-crystal diamond by ion implantation. Acta Mater., 116, 95-103(2016).

    [27] S. Chen, Z. Liu, H. Du, C. Tang, C. Ji, B. Quan, R. Pan, L. Yang, X. Li, C. Gu, X. Zhang, Y. Yao, J. Li, N. X. Fang, J. Li. Electromechanically reconfigurable optical nano-kirigami. Nat. Commun..

    [28] Z. G. Liu, Y. Xu, C. Y. Ji, S. S. Chen, X. P. Li, X. D. Zhang, Y. G. Yao, J. F. Li. Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv. Mater., 32, 1907077(2020).

    Yu Han, Zhiguang Liu, Shanshan Chen, Juan Liu, Yongtian Wang, Jiafang Li. Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation[J]. Photonics Research, 2020, 8(9): 1506
    Download Citation