• Photonics Research
  • Vol. 9, Issue 3, 379 (2021)
Can Li1, Jinjuan Gao1、2, Muhammad Shafi1, Runcheng Liu1, Zhipeng Zha1, Dejun Feng3, Mei Liu1, Xuejian Du1, Weiwei Yue1、2、4、5、*, and Shouzhen Jiang1、2、6、*
Author Affiliations
  • 1Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 2Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China
  • 3School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 4Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
  • 5e-mail: yuewei@sdnu.edu.cn
  • 6e-mail: jiang_sz@126.com
  • show less
    DOI: 10.1364/PRJ.416815 Cite this Article Set citation alerts
    Can Li, Jinjuan Gao, Muhammad Shafi, Runcheng Liu, Zhipeng Zha, Dejun Feng, Mei Liu, Xuejian Du, Weiwei Yue, Shouzhen Jiang. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film[J]. Photonics Research, 2021, 9(3): 379 Copy Citation Text show less
    References

    [1] H. Bhardwaj, G. Sumana, C. A. Marquette. A label-free ultrasensitive microfluidic surface plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chem., 307, 125530(2020).

    [2] H. H. Nguyen, J. Park, S. Kang, M. Kim. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 15, 10481-10510(2015).

    [3] P. Singh. SPR biosensors: historical perspectives and current challenges. Sens. Actuators B, 229, 110-130(2016).

    [4] Q. Wang, J.-Y. Jing, B.-T. Wang. Highly sensitive SPR biosensor based on graphene oxide and staphylococcal protein A co-modified TFBG for human IgG detection. IEEE Trans. Instrum. Meas., 68, 3350-3357(2019).

    [5] Y. Zhao, R. J. Tong, F. Xia, Y. Peng. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron., 142, 111505(2019).

    [6] E. N. Primo, M. J. Kogan, H. E. Verdejo, S. Bollo, M. D. Rubianes, G. A. Rivas. Label-free graphene oxide-based surface plasmon resonance immunosensor for the quantification of galectin-3, a novel cardiac biomarker. ACS Appl. Mater. Interfaces, 10, 23501-23508(2018).

    [7] S. Nootchanat, W. Jaikeandee, P. Yaiwong, C. Lertvachirapaiboon, K. Shinbo, K. Kato, S. Ekgasit, A. Baba. Fabrication of miniature surface plasmon resonance sensor chips by using confined sessile drop technique. ACS Appl. Mater. Interfaces, 11, 11954-11960(2019).

    [8] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 70, 1-87(2007).

    [9] X. Xi, J. Xu, S. Li, J. Song, W. Yang, Y. Sun, S. Jiang, Y. Han, X. Fan. An Au nanofilm-graphene/D-type fiber surface plasmon resonance sensor for highly sensitive specificity bioanalysis. Sensors (Basel), 20, 991(2020).

    [10] D. Zhang, G. Tan, M. Wang, B. Li, M. Dang, H. Ren, A. Xia. The enhanced photocatalytic activity of Ag-OVs-(0 0 1) BiOCl by separating secondary excitons under double SPR effects. Appl. Surf. Sci., 526, 146689(2020).

    [11] N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, L. Wei. Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol., 2, 1600185(2017).

    [12] H. K. Hunt, A. M. Armani. Label-free biological and chemical sensors. Nanoscale, 2, 1544-1559(2010).

    [13] M. Li, S. K. Cushing, N. Wu. Plasmon-enhanced optical sensors: a review. Analyst, 140, 386-406(2015).

    [14] X. Xiong, Y. Chen, H. Wang, S. Hu, Y. Luo, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, J. Zhang, Z. Chen. Plasmonic interface modified with graphene oxide sheets overlayer for sensitivity enhancement. ACS Appl. Mater. Interfaces, 10, 34916-34923(2018).

    [15] Y. Qian, Y. Zhao, Q.-L. Wu, Y. Yang. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuators B, 260, 86-105(2018).

    [16] X. D. Wang, O. S. Wolfbeis. Fiber-optic chemical sensors and biosensors (2015-2019). Anal. Chem., 92, 397-430(2020).

    [17] F. Chiavaioli, P. Zubiate, I. Del Villar, C. R. Zamarreno, A. Giannetti, S. Tombelli, C. Trono, F. J. Arregui, I. R. Matias, F. Baldini. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens., 3, 936-943(2018).

    [18] Q. Wang, J.-Y. Jing, X.-Z. Wang, L.-Y. Niu, W.-M. Zhao. A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation. IEEE Trans. Instrum. Meas., 69, 2218-2224(2020).

    [19] A. D. S. Arcas, F. D. S. Dutra, R. Allil, M. M. Werneck. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors. Sensors (Basel), 18, 648(2018).

    [20] N. Cennamo, G. D’Agostino, M. Pesavento, L. Zeni. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B, 191, 529-536(2014).

    [21] Y.-N. Zhangd, E. Siyu, B. Tao, Q. Wu, B. Han. Reflective SPR sensor for simultaneous measurement of nitrate concentration and temperature. IEEE Trans. Instrum. Meas., 68, 4566-4574(2019).

    [22] N. Cennamo, F. Arcadio, A. Minardo, D. Montemurro, L. Zeni. Experimental characterization of plasmonic sensors based on lab-built tapered plastic optical fibers. Appl. Sci., 10, 4389(2020).

    [23] S. Deng, F. Yu, H. Deng, L. Yuan, C. Teng. Twisted tapered plastic optical fibers for continuous liquid level sensing. Opt. Fiber Technol., 59, 102318(2020).

    [24] L. Zeni, M. Pesavento, S. Marchetti, N. Cennamo. Slab plasmonic platforms combined with plastic optical fibers and molecularly imprinted polymers for chemical sensing. Opt. Laser Technol., 107, 484-490(2018).

    [25] W. Gong, S. Jiang, Z. Li, C. Li, J. Xu, J. Pan, Y. Huo, B. Man, A. Liu, C. Zhang. Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Opt. Express, 27, 3483-3495(2019).

    [26] G. Wang, Y. Lu, L. Duan, J. Yao. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. Sel. Top. Quantum Electron., 27, 5600108(2021).

    [27] W. Zheng, B. Han, E. Siyu, Y. Sun, X. Li, Y. Cai, Y.-N. Zhang. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem. J., 157, 105010(2020).

    [28] A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [29] S. A. Maier, H. A. Atwater. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 98, 011101(2005).

    [30] S. Hu, Y. Chen, Y. Chen, L. Chen, H. Zheng, N. H. Azeman, M. X. Liu, G. S. Liu, Y. Luo, Z. Chen. High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO2. Opt. Express, 28, 25562-25573(2020).

    [31] D. F. Santos, A. Guerreiro, J. M. Baptista. SPR optimization using metamaterials in a D-type PCF refractive index sensor. Opt. Fiber Technol., 33, 83-88(2017).

    [32] K. V. Sreekanth, A. De Luca, G. Strangi. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci. Rep., 3, 3291(2013).

    [33] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [34] K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621-627(2016).

    [35] K. V. Sreekanth, Y. Alapan, M. ElKabbash, A. M. Wen, E. Ilker, M. Hinczewski, U. A. Gurkan, N. F. Steinmetz, G. Strangi. Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials. Adv. Opt. Mater., 4, 1767-1772(2016).

    [36] C. Li, Z. Li, S. Li, Y. Zhang, B. Sun, Y. Yu, H. Ren, S. Jiang, W. Yue. LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films. Opt. Express, 28, 6071-6083(2020).

    [37] J. Sun, S. Jiang, J. Xu, Z. Li, C. Li, Y. Jing, X. Zhao, J. Pan, C. Zhang, B. Man. Sensitive and selective surface plasmon resonance sensor employing a gold-supported graphene composite film/D-shaped fiber for dopamine detection. J. Phys. D, 52, 195402(2019).

    [38] S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, Y. Zhou. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun., 8, 14902(2017).

    [39] W. Yang, J. Yu, X. Xi, Y. Sun, Y. Shen, W. Yue, C. Zhang, S. Jiang. Preparation of graphene/ITO nanorod metamaterial/U-bent-annealing fiber sensor and DNA biomolecule detection. Nanomaterials (Basel), 9, 1154(2019).

    [40] H. Neff, W. Zong, A. M. N. Lima, M. Borre, G. Holzhüter. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films, 496, 688-697(2006).

    [41] R. Tabassum, B. D. Gupta. SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Opt. Commun., 367, 23-34(2016).

    [42] S. Tadepalli, Z. Kuang, Q. Jiang, K. K. Liu, M. A. Fisher, J. J. Morrissey, E. D. Kharasch, J. M. Slocik, R. R. Naik, S. Singamaneni. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Sci. Rep., 5, 16206(2015).

    [43] L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J. Appl. Phys., 92, 1649-1656(2002).

    [44] B. Wood, J. B. Pendry, D. P. Tsai. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B, 74, 115116(2006).

    [45] W. Yang, Z. Li, Z. Lu, J. Yu, Y. Huo, B. Man, J. Pan, H. Si, S. Jiang, C. Zhang. Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection. Opt. Express, 27, 3000-3013(2019).

    [46] W. Zhou, J. Zhu, C. Cheng, J. Liu, H. Yang, C. Cong, C. Guan, X. Jia, H. J. Fan, Q. Yan, C. M. Li, T. Yu. A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy Environ. Sci., 4, 4954-4961(2011).

    [47] J. Sun, X. Xie, K. Xie, S. Xu, S. Jiang, J. Ren, Y. Zhao, H. Xu, J. Wang, W. Yue. Magnetic graphene field-effect transistor biosensor for single-strand DNA detection. Nano. Res. Lett., 14, 248(2019).

    [48] L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, 1-40(2015).

    [49] Y. Guo, W. Newman, C. L. Cortes, Z. Jacob. Applications of hyperbolic metamaterial substrates. Adv. OptoElectron., 2012, 452502(2012).

    [50] C. L. Cortes, W. Newman, S. Molesky, Z. Jacob. Quantum nanophotonics using hyperbolic metamaterials. J. Opt., 14, 063001(2012).

    [51] J. Elser, V. A. Podolskiy, I. Salakhutdinov, I. Avrutsky. Nonlocal effects in effective-medium response of nanolayered metamaterials. Appl. Phys. Lett., 90, 191109(2007).

    CLP Journals

    [1] Ruoqin Yan, Tao Wang, Xinzhao Yue, Huimin Wang, Yu-Hui Zhang, Peng Xu, Lu Wang, Yuandong Wang, Jinyan Zhang. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor[J]. Photonics Research, 2022, 10(1): 84

    Can Li, Jinjuan Gao, Muhammad Shafi, Runcheng Liu, Zhipeng Zha, Dejun Feng, Mei Liu, Xuejian Du, Weiwei Yue, Shouzhen Jiang. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film[J]. Photonics Research, 2021, 9(3): 379
    Download Citation