• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170604 (2019)
Zhixu Jia, Chuanfei Yao, Shijie Jia, Shunbin Wang, Zhenrui Li, Zhipeng Zhao, Weiping Qin, and Guanshi Qin*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/LOP56.170604 Cite this Article Set citation alerts
    Zhixu Jia, Chuanfei Yao, Shijie Jia, Shunbin Wang, Zhenrui Li, Zhipeng Zhao, Weiping Qin, Guanshi Qin. Progress on Novel Mid-Infrared Glass Fibers and Relative Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170604 Copy Citation Text show less
    References

    [1] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 445, 627-630(2007).

    [2] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photonics, 3, 99-102(2009).

    [3] Lin Z Y, Jia X Y, Wang C L et al. Ionization suppression of diatomic molecules in an intense midinfrared laser field[J]. Physical Review Letters, 108, 223001(2012).

    [4] Xie K, Cao Y[J]. Research on design and implementation of long distance infrared laser wireless communication system Digital Technology and Application, 2016, 41.

    [5] Taccheo S. Fiber lasers for medical diagnostics and treatments: state of the art, challenges and future perspectives[J]. Proceedings of SPIE, 10058, 1005808(2017).

    [6] Qian L J. Development and integration of widly tunable mid-infrared femtosecond and narrow-band long-pulse laser devices[J]. Infrared and Laser Engineering, 35, 43(2006).

    [7] Deng Y, Zhu Q H, Zeng X M et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 43, 21-26(2006).

    [8] Chen L Z, Wen S C. Recent advances and methods of optical parametric generation and amplification for tunable ultra-short mid-infrared pulse[J]. Laser & Optoelectronics Progress, 48, 081902(2011).

    [9] Yu Z J, Han H N, Wei Z Y. Progress in dual-comb spectroscopy[J]. Physics, 43, 460-467(2014).

    [10] Meng D D, Zhang H B, Li M S et al. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 47, 1105009(2018).

    [11] Li S S, Yan X S. Research on mid-infrared laser source in laser countermeasure system and key technology[J]. Electro-Optic Technology Application, 33, 19-23(2018).

    [12] Budni P A, Pomeranz L A, Lemons M L et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Journal of the Optical Society of America B, 17, 723-728(2000).

    [13] Gmachl C, Capasso F, Sivco D L et al. Recent progress in quantum cascade lasers and applications[J]. Reports on Progress in Physics, 64, 1533-1601(2001).

    [14] Perram G P, Marciniak M A, Goda M. High energy laser weapons: technology overview[J]. Proceedings of SPIE, 5414, 1-25(2004).

    [15] Swiderski J. High-power mid-infrared supercontinuum sources:current status and future perspectives[J]. Progress in Quantum Electronics, 38, 189-235(2014).

    [16] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [17] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [18] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [19] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [20] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [21] Wang Y Y, Dai S X, Li G T et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Optics Letters, 42, 3458-3461(2017).

    [22] Qin G S, Yan X, Kito C et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 95, 161103(2009).

    [23] Xia C N, Kumar M, Kulkarni O P et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping[J]. Optics Letters, 31, 2553-2555(2006).

    [24] Xia C N, Kumar M, Cheng M Y et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power[J]. Optics Express, 15, 865-871(2007).

    [25] Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422-434(2009).

    [26] Yang W Q, Zhang B, Xue G H et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 39, 1849-1852(2014).

    [27] Liu K, Liu J, Shi H X et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 22, 24384-24391(2014).

    [28] Liu K, Liu J, Shi H X et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier. [C]//Advanced Solid State Lasers, November 16-21, 2014, Shanghai, China. Washington, D.C.: OSA, AM3A, 6(2014).

    [29] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [30] Domachuk P, Wolchover N A, Cronin-Golomb M et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 16, 7161-7168(2008).

    [31] Delmonte T, Watson M A. O'Driscoll E J, et al. Generation of Mid-IR continuum using tellurite microstructured fiber. [C]//2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, May 21-26, 2006, Long Beach, CA, USA. New York: IEEE, CTuA4(2006).

    [32] Thapa R, Rhonehouse D, Nguyen D et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[J]. Proceedings of SPIE, 8898, 889808(2013).

    [33] Shi H X, Feng X, Tan F Z et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 6, 3967-3976(2016).

    [34] Jia Z X, Yao C F, Jia S J et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 110, 261106(2017).

    [35] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [36] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).

    [37] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [38] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [39] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [40] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).

    [41] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho 3+-doped fluoride fiber laser with a 3.9-μm emission wavelength [J]. Applied Optics, 36, 8595-8600(1997).

    [42] Sanghera J S, Aggarwal I D, Busse L E et al. Chalcogenide optical fibers target mid-IR applications[J]. Laser Focus World, 41, 83-87(2005).

    [43] Harbold J M, Ilday F O, Wise F W et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 14, 822-824(2002).

    [44] Slusher R E, Lenz G, Hodelin J et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B, 21, 1146-1155(2004).

    [45] Feng X, Mairaj A K, Hewak D W et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 23, 2046-2054(2005).

    [46] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [47] Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses[J]. Journal of the American Ceramic Society, 78, 2828-2830(1995).

    [48] Anashkina E A, Dorofeev V V, Koltashev V V et al. Development of Er 3+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 μm [J]. Optical Materials Express, 7, 4337-4351(2017).

    [49] Schweizer T, Samson B N, Hector J R et al. Infrared emission from holmium doped gallium lanthanum sulphide glass[J]. Infrared Physics & Technology, 40, 329-335(1999).

    [50] Moizan V, Nazabal V, Troles J et al. Er 3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy [J]. Optical Materials, 31, 39-46(2008).

    [51] Yang A P, Qiu J H, Zhang M J et al. Mid-infrared luminescence of Dy 3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers [J]. Journal of Alloys and Compounds, 695, 1237-1242(2017).

    [52] Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser [J]. Optical Materials Express, 8, 2089-2102(2018).

    [53] Yu X Y, Dai S X, Zhou Y X et al. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers[J]. Chinese Journal of Lasers, 39, 0105003(2012).

    [54] Jia S J, Jia Z X, Yao C F et al. Ho 3+ doped fluoroaluminate glass fibers for 2.9 μm lasing [J]. Laser Physics, 28, 015802(2018).

    [55] Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho 3+-doped fluoroindate glass fibers [J]. IEEE Photonics Technology Letters, 30, 323-326(2018).

    [56] Muravyev S V, Anashkina E A, Andrianov A V et al. Dual-band Tm 3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm [J]. Scientific Reports, 8, 16164(2018).

    [57] Jia Z X, Yao C F, Jia S J et al. Supercontinuum generation covering the entire 0.4-5 μm transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber[J]. Laser Physics Letters, 15, 025102(2018).

    [58] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).

    [59] Savelii I, Desevedavy F, Jules J C et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 35, 1595-1599(2013).

    [60] Penilla E H. Devia-Cruz L F, Duarte M A, et al. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials[J]. Light: Science & Applications, 7, 33(2018).

    [61] Campbell J H[J]. Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. Journal of Non-Crystalline Solids, 263/264, 318-341(2000).

    [62] Huang F F, Ma Y Y, Li W W et al. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3[J]. Scientific Reports, 4, 3607(2014).

    [63] Chen H Y, Gan F X. Vibrational spectra and structure of AlF3-YF3 fluoride glasses[J]. Journal of Non-Crystalline Solids, 112, 272-276(1989).

    [64] Li J F, Luo H Y, Liu Y et al. Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0900414(2014).

    [65] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [66] Saad M, Pafchek R, Foy P et al. Indium fluoride glass fibers for mid-infrared applications. [C]//Workshop on Specialty Optical Fibers and Their Applications, November 4-6, 2015, Hong Kong, China. Washington, D.C.: OSA, WW4A, 3(2015).

    [67] Almeida R M, Pereira J C, Messaddeq Y et al. Vibrational spectra and structure of fluoroindate glasses[J]. Journal of Non-Crystalline Solids, 161, 105-108(1993).

    [68] Michalska M, Mikolajczyk J, Wojtas J et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses[J]. Scientific Reports, 6, 39138(2016).

    [69] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).

    Zhixu Jia, Chuanfei Yao, Shijie Jia, Shunbin Wang, Zhenrui Li, Zhipeng Zhao, Weiping Qin, Guanshi Qin. Progress on Novel Mid-Infrared Glass Fibers and Relative Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170604
    Download Citation