• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306021 (2021)
Jingyang Liu1, Tao Wang1, Qian Zhang2, Jieru Zhao2, Mingjiang Zhang1、2、*, Jianzhong Zhang1、2, Lijun Qiao1, and Shaohua Gao2
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • 2College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP202158.1306021 Cite this Article Set citation alerts
    Jingyang Liu, Tao Wang, Qian Zhang, Jieru Zhao, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Shaohua Gao. Research Progress on Temperature-Strain Dual-Parameter Sensing in BOTDA System[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306021 Copy Citation Text show less
    References

    [1] Adachi S. Distributed optical fiber sensors and their applications[C], 329-333(2008).

    [2] Ren L, Jiang T, Jia Z G et al. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology[J]. Measurement, 122, 57-65(2018).

    [3] Zhang X P, Wu J L, Shan Y Y et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fiber sensing technology[J]. Optoelectronic Technology, 37, 221-229(2017).

    [4] Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 78, 81-103(2016).

    [5] Barrias A, Casas J R, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 16, E748(2016).

    [6] Bao X, Webb D J, Jackson D A. Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber[J]. Optics Letters, 19, 141-143(1994).

    [7] Davis M A, Kersey A D. Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering[J]. Proceedings of SPIE, 2838, 114-123(1996).

    [8] Posey R, Vohra S T. An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements[J]. IEEE Photonics Technology Letters, 11, 1641-1643(1999).

    [9] Smith J, Brown A, DeMerchant M et al. Simultaneous distributed strain and temperature measurement[J]. Applied Optics, 38, 5372-5377(1999).

    [10] Zou L F, Bao X Y, Shahraam A V et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber[J]. Optics Letters, 29, 1485-1487(2004).

    [11] Dong Y K, Chen L, Bao X Y. High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber[J]. IEEE Photonics Technology Letters, 22, 1364-1366(2010).

    [12] Liu X, Bao X Y. Brillouin spectrum in LEAF and simultaneous temperature and strain measurement[J]. Journal of Lightwave Technology, 30, 1053-1059(2012).

    [13] Li A, Wang Y, Fang J et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination[J]. Optics Letters, 40, 1488-1491(2015).

    [14] Zaghloul M A S, Wang M H, Milione G et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber[J]. Sensors, 18, E1176(2018).

    [15] Minardo A, Coscetta A, Catalano E et al. Simultaneous strain and temperature measurements by dual wavelength Brillouin sensors[J]. IEEE Sensors Journal, 17, 3714-3719(2017).

    [16] Taki M, Signorini A, Oton C J et al. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 38, 4162-4165(2013).

    [17] Zhou D P, Li W, Chen L et al. Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber[J]. Sensors, 13, 1836-1845(2013).

    [18] Ruiz-Lombera R, Fuentes A, Rodriguez-Cobo L et al. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks[J]. Journal of Lightwave Technology, 36, 2114-2121(2018).

    [19] Wang B W, Wang L, Yu C Y et al. Simultaneous temperature and strain measurement using deep neural networks for BOTDA sensing system[C], Th2A.66(2018).

    [20] Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory[J]. Journal of Lightwave Technology, 7, 1170-1176(1989).

    [21] Boyd R W[M]. Nonlinear optics(2007).

    [22] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. Journal of Lightwave Technology, 15, 1842-1851(1997).

    [23] Agrawal G P. Nonlinear fiber optics[M]. Nonlinear science at the dawn of the 21st century, 195-211(2000).

    [24] Zhang X P[M]. Fully distributed optical fiber sensing technology, 224-227(2013).

    [25] Zrelli A. Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems[J]. IET Communications, 13, 3012-3019(2019).

    [26] Ding P, Dong X P, Ye X W. Research on measurement of fiber Bragg grating considering the cross-sensitivity of temperature and strain[J]. Laser & Optoelectronics Progress, 55, 020605(2018).

    [27] Sun S Q, Chu F H, Lu J Y. Progress in cross sensitivity of fiber Bragg grating sensor[J]. Laser & Optoelectronics Progress, 54, 040006(2017).

    [28] Bao X Y, Smith J, Brown A W. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum[J]. Proceedings of SPIE, 4920, 311-322(2002).

    [29] Parker T R, Farhadiroushan M, Handerek V A et al. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers[J]. Optics Letters, 22, 787-789(1997).

    [30] Wang T Y[M]. Special optical fiber and optical fiber communication, 2-9(2016).

    [31] Zeng X D, Bao X Y, Chhoa C Y et al. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars[J]. Applied Optics, 41, 5105-5114(2002).

    [32] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [33] Zou L F, Bao X Y, Chen L. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core[J]. Optics Letters, 28, 2022-2024(2003).

    [34] Zou L F, Bao X Y, Chen L. Distributed Brillouin temperature sensing in photonic crystal fiber[J]. Smart Materials and Structures, 14, S8-S11(2005).

    [35] Li J H, Pei L, Wang J S et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance[J]. Chinese Journal of Lasers, 46, 0210002(2019).

    [36] Li Z L, Yan L S, Zhang X P et al. Temperature and strain discrimination in BOTDA fiber sensor by utilizing dispersion compensating fiber[J]. IEEE Sensors Journal, 18, 7100-7105(2018).

    [37] Zou W W, He Z Y, Hotate K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber[J]. Optics Express, 17, 1248-1255(2009).

    [38] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).

    [39] Dong Y K, Bao X Y, Li W H. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor[J]. Applied Optics, 48, 4297-4301(2009).

    [40] Dong Y K, Zhou D W, Teng L et al. Principle of Brillouin dynamic grating and its applications in optical fiber sensing[J]. Acta Physica Sinica, 66, 075201(2017).

    [41] Xu Y P, Ren M Q, Lu Y et al. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber[J]. Optics Letters, 41, 1138-1141(2016).

    [42] Song K Y, Kim Y H, Kim B Y. Intermodal stimulated Brillouin scattering in two-mode fibers[J]. Optics Letters, 38, 1805-1807(2013).

    [43] Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. Optics Express, 21, 31894-31906(2013).

    [44] Tong Z R, Wang X, Wang Y et al. Dual-parameter optical fiber sensor based on few-mode fiber and spherical structure[J]. Optics Communications, 405, 60-65(2017).

    [45] Li A, Hu Q, Chen X et al. Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating[J]. Optics Letters, 39, 3153-3156(2014).

    [46] Wu H, Wang R X, Liu D M et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 41, 1514-1517(2016).

    [47] Mizuno Y, Hayashi N, Tanaka H et al. Brillouin scattering in multi-core optical fibers for sensing applications[J]. Scientific Reports, 5, 11388(2015).

    [48] Li M J, Li S P, Derick J A et al. Dual core optical fiber for distributed Brillouin fiber sensors[C], AW4I.3(2014).

    [49] Chen K P, Zaghloul M, Wang M H et al. Dual-core fiber characterizations for distributed simultaneous temperature and strain measurements using Brillouin optical time domain analysis[C], W4A.32(2016).

    [50] Wang H Y, Gao S, Baker C et al. Stimulated Brillouin scattering in a tapered dual-core As2Se3-PMMA fiber for simultaneous temperature and strain sensing[J]. Optics Letters, 45, 3301-3304(2020).

    [51] Zhao Z Y, Soto M A, Tang M et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 24, 25211-25223(2016).

    [52] Zhao Z Y, Dang Y L, Tang M et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. Optics Letters, 42, 171-174(2017).

    [53] Yuan L B. Multi-core fiber characteristics and its sensing applications[J]. Laser & Optoelectronics Progress, 56, 170612(2019).

    [54] Xu X N, Chen Y J. Curvature sensing measurement based on seven-core fiber and few-mode fiber splicing structure[J]. Acta Optica Sinica, 39, 0306001(2019).

    [55] Minardo A, Coscetta A, Bernini R et al. Brillouin optical time domain analysis in silica fibers at 850-nm wavelength[J]. IEEE Photonics Technology Letters, 28, 2577-2580(2016).

    [56] Brown K A, Brown A W, Colpitts B G. Combined Raman and Brillouin scattering sensor for simultaneous high-resolution measurement of temperature and strain[J]. Proceedings of SPIE, 6167, 616716(2006).

    [57] Alahbabi M N, Cho Y T, Newson T P. Simultaneous distributed measurements of temperature and strain using spontaneous Raman and Brillouin scattering[J]. Proceedings of SPIE, 5502, 488-491(2004).

    [58] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).

    [59] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).

    [60] Soller B J, Wolfe M, Froggatt M E. Polarization resolved measurement of Rayleigh backscatter in fiber-optic components[C], NWD3(2005).

    [61] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).

    [62] Froggatt M E, Gifford D K, Kreger S et al. Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry[J]. Journal of Lightwave Technology, 24, 4149-4154(2006).

    [63] Liu Y Z, Jiang Z Q, Ma F et al. Hyperspectral image classification based on hypergraph and convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 111007(2019).

    [64] Kong F Q, Zhou Y B, Shen Q et al. End-to-end multispectral image compression using convolutional neural network[J]. Chinese Journal of Lasers, 46, 1009001(2019).

    [65] Azad A K, Wang L, Guo N et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Optics Express, 24, 6769-6782(2016).

    [66] Wang B, Wang L, Guo N et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Optics Express, 27, 2530-2543(2019).

    Jingyang Liu, Tao Wang, Qian Zhang, Jieru Zhao, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Shaohua Gao. Research Progress on Temperature-Strain Dual-Parameter Sensing in BOTDA System[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306021
    Download Citation