• Photonics Research
  • Vol. 10, Issue 2, 444 (2022)
Yuefang Yan1、2、†, Yu Liu1、†, Haoyu Zhang1, Yue Li1, Yuwei Li1, Xi Feng1, Donglin Yan1, Jianjun Wang1, Honghuan Lin1, Feng Jing1, Wenhui Huang2, and Rumao Tao1、*
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.441384 Cite this Article Set citation alerts
    Yuefang Yan, Yu Liu, Haoyu Zhang, Yue Li, Yuwei Li, Xi Feng, Donglin Yan, Jianjun Wang, Honghuan Lin, Feng Jing, Wenhui Huang, Rumao Tao. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 2022, 10(2): 444 Copy Citation Text show less
    References

    [1] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B, 27, B63-B92(2010).

    [2] Z. Liu, X. Jin, R. Su, P. Ma, P. Zhou. Development status of high power fiber lasers and their coherent beam combination. Sci. China Inf. Sci., 62, 1-32(2019).

    [3] W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, S.-U. Alam. Fiber lasers and their applications: introduction. J. Opt. Soc. Am. B, 34, FLA1(2017).

    [4] J. Zhu, P. Zhou, Y. Ma, X. Xu, Z. Liu. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt. Express, 19, 18645-18654(2011).

    [5] R. Tao, X. Wang, P. Zhou. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J. Sel. Top. Quantum Electron., 24, 0903319(2018).

    [6] M. N. Zervas. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers. Opt. Express, 27, 19019-19041(2019).

    [7] Z. Liu, P. Ma, R. Su, R. Tao, Y. Ma, X. Wang, P. Zhou. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]. J. Opt. Soc. Am. B, 34, A7-A14(2017).

    [8] T. Y. Fan. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron., 11, 567-577(2005).

    [9] A. Flores, I. Dajani, R. Holten, T. Ehrenreich, B. Andersona. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers. Opt. Eng., 55, 096101(2016).

    [10] P. Ma, H. Chang, Y. Ma, R. Su, J. Zhou. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array. Opt. Laser Technol., 140, 107016(2021).

    [11] H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, P. Zhou. First experimental demonstration of coherent beam combining of more than 100 beams. Photon. Res., 8, 1943-1948(2020).

    [12] S. Chen, Y. Li, K. Lu. Branch arm filtered coherent combining of tunable fiber lasers. Opt. Express, 13, 7878-7883(2005).

    [13] M. Karow, J. Neumann, D. Kracht, P. Wessels. Impact of amplified spontaneous emission on Brillouin scattering of a single-frequency signal. Opt. Express, 20, 10572-10582(2012).

    [14] E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, V. P. Gapontsev. Industrial grade 100 kW power CW fiber laser. Advanced Solid-State Lasers Congress, ATh4A.2(2013).

    [15] P. Zhou, L. Huang, J. Leng, H. Xiao, J. Xu, T. Yao. High-power double-clad fiber lasers: 30 years of development. Sci. Chin. Technol., 50, 123-135(2020).

    [16] J. E. Rothenberg. All-fiber integrated high power coherent beam combination. U.S. patent(2012).

    [17] J. E. Rothenberg, E. C. T. Cheung. Integrated spectral and all-fiber coherent beam combination. U.S. patent(2012).

    [18] J. Li, H. Zhao, Z. Chen, X. Wang, X. Xu. All-fiber active coherent combining via a fiber combiner. Opt. Commun., 286, 273-276(2013).

    [19] B. Yang, X. Wang, P. Ma, Z. Pu, X. Xu. Active phase locking of four Yb-doped fiber amplifiers with a multi-mode fiber combiner. International Photonics and OptoElectronics Meetings, JF2A.6(2014).

    [20] R. Uberna, A. Bratcher, T. G. Alley, A. D. Sanchez, A. S. Flores, B. Pulford. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Opt. Express, 18, 13547-13553(2010).

    [21] J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, C. P. J. Barty. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express, 16, 13240-13266(2008).

    [22] R. Tao, L. Si, Y. Ma, P. Zhou, Z. Liu. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model. Appl. Opt., 51, 5826-5833(2012).

    [23] C. K. Jen, J. E. B. Oliveira, N. Goto, K. Abe. Role of guided acoustic-wave properties in single-mode optical fiber design. Electron. Lett., 24, 1419-1420(1988).

    [24] H. Lin, R. Tao, C. Li, B. Wang, C. Guo, Q. Shu, P. Zhao, L. Xu, J. Wang, F. Jing, Q. Chu. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability. Opt. Express, 27, 9716-9724(2019).

    [25] R. Tao, R. Su, P. Ma, X. Wang, P. Zhou. Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys. Lett., 14, 025101(2017).

    [26] R. Tao, X. Wang, P. Zhou, L. Si. Analysis of the effects of mismatched errors on coherent beam combining based on a self-imaging waveguide. Quantum Electron., 46, 61-67(2016).

    [27] R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Sel. Top. Quantum Electron., 6, 150-162(2000).

    [28] R. Scarmozzino, R. M. Osgood. Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications. J. Opt. Soc. Am. A, 8, 724-731(1991).

    [29] O. Bryngdahl. Image formation using self-imaging techniques. J. Opt. Soc. Am. B, 63, 416-419(1973).

    [30] I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, T. Ehrenreich. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. Proc. SPIE, 9728, 972801(2016).

    [31] Y. Ma, P. Zhou, X. Wang, H. Ma, X. Xu, L. Si, Z. Liu, Y. Zhao. Coherent beam combination with single frequency dithering technique. Opt. Lett., 35, 1308-1310(2010).

    [32] R. Tao, Y. Ma, L. Si, X. Dong, P. Zhou, Z. Liu. Target-in-the-loop high-power adaptive phase-locked fiber laser array using single-frequency dithering technique. Appl. Phys. B, 105, 285-291(2011).

    [33] M. Bachmann, P. A. Besse, H. Melchior. General self-imaging properties in N × N multimode interference couplers including phase relations. Appl. Opt., 33, 3905-3911(1994).

    [34] R. Tao, X. Wang, H. Xiao, P. Zhou, L. Si. Coherent beam combination of fiber lasers with a strongly confined tapered self-imaging waveguide: theoretical modeling and simulation. Photon. Res., 1, 186-196(2013).

    [35] M. C. Paul, R. Sen, T. Bandyopadhyay. Fluorine incorporation in silica glass by MCVD process—a critical study. J. Mater. Sci., 32, 3511-3516(1997).

    [36] S. R. Nagel, J. B. Macchesney, K. L. Walker. An overview of the modified chemical vapor-deposition (MCVD) process and performance. IEEE J. Quantum Electron., 18, 459-476(1982).

    [37] A. E. Siegman. How to (maybe) measure laser beam quality. DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, MQ1(1998).

    [38] R. Tao, L. Si, Y. Ma, P. Zhou, Z. Liu. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence. Appl. Opt., 51, 5609-5618(2012).

    [39] I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, E. Lallier, E. Durand, A. Brignon, J. C. Chanteloup. Coherent beam combining of 61 femtosecond fiber amplifiers. Opt. Express, 28, 20152-20161(2020).

    [40] P. Zhou, X. Wang, Y. Ma, H. Ma, Z. Liu, X. Xu. Optimal truncation of element beam in a coherent fiber laser array. Chin. Phys. Lett., 26, 044206(2009).

    [41] G. D. Goodno, C. C. Shih, J. E. Rothenberg. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express, 18, 25403-25414(2010).

    [42] M. Muller, C. Aleshire, A. Klenke, E. Haddad, F. Legare, A. Tunnermann, J. Limpert. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett., 45, 3083-3086(2020).

    [43] X. Wang, P. Zhou, R. Su, P. Ma, R. Tao, Y. Ma, X. Xu, Z. Liu. Current situation, tendency and challenge of coherent combining of high power fiber lasers. Chin. J. Lasers, 44, 0201001(2017).

    [44] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai. Thermal Expansion: Metallic Elements and Alloys. Thermophysical Properties of Matter, 12(1975).

    [45] https://www.ipgphotonics.com. https://www.ipgphotonics.com

    [46] https://www.ceramoptec.com/industrial-products/fibers/optran-uv-ncc-/-wf-ncc.html. https://www.ceramoptec.com/industrial-products/fibers/optran-uv-ncc-/-wf-ncc.html

    [47] Y. Wang, Y. Sun, W. Peng, Y. Feng, J. Wang, Y. Ma, Q. Gao, R. Zhu, C. Tang. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality. Appl. Opt., 60, 6331-6336(2021).

    [48] Z. Huang, Q. Shu, R. Tao, Q. Chu, Y. Luo, D. Yan, X. Feng, Y. Liu, W. Wu, H. Zhang, H. Lin, J. Wang, F. Jing. > 5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier. IEEE Photon. Technol. Lett., 33, 1181-1184(2021).

    [49] Y. Liu, S. Huang, W. Wu, P. Zhao, X. Tang, X. Feng, M. Li, B. Shen, H. Song, R. Tao, J. Wang. 2 kW high stability robust fiber cladding mode stripper with moderate package temperature rising. IEEE Photon. Technol. Lett., 32, 1151-1154(2020).

    [50] B. Yang, W. Peng, H. Zhang, X. Xi, X. Xu. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability. Opt. Express, 29, 26366-26374(2021).

    Yuefang Yan, Yu Liu, Haoyu Zhang, Yue Li, Yuwei Li, Xi Feng, Donglin Yan, Jianjun Wang, Honghuan Lin, Feng Jing, Wenhui Huang, Rumao Tao. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 2022, 10(2): 444
    Download Citation