• Photonics Research
  • Vol. 10, Issue 4, 1063 (2022)
Jin Chang1、2、*, Johannes W. N. Los2, Ronan Gourgues2, Stephan Steinhauer3, S. N. Dorenbos2, Silvania F. Pereira1, H. Paul Urbach1, Val Zwiller3, and Iman Esmaeil Zadeh1
Author Affiliations
  • 1Optics Research Group, ImPhys Department, Faculty of Applied Sciences, Delft University of Technology, Delft 2628 CJ, The Netherlands
  • 2Single Quantum B.V., Delft 2628 CJ, The Netherlands
  • 3KTH Royal Institute of Technology, Department of Applied Physics, Albanova University Centre, 106 91 Stockholm, Sweden
  • show less
    DOI: 10.1364/PRJ.437834 Cite this Article Set citation alerts
    Jin Chang, Johannes W. N. Los, Ronan Gourgues, Stephan Steinhauer, S. N. Dorenbos, Silvania F. Pereira, H. Paul Urbach, Val Zwiller, Iman Esmaeil Zadeh. Efficient mid-infrared single-photon detection using superconducting NbTiN nanowires with high time resolution in a Gifford-McMahon cryocooler[J]. Photonics Research, 2022, 10(4): 1063 Copy Citation Text show less
    References

    [1] I. Esmaeil Zadeh, J. Chang, J. W. Los, S. Gyger, A. W. Elshaari, S. Steinhauer, S. N. Dorenbos, V. Zwiller. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett., 118, 190502(2021).

    [2] V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, S. Nam. Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors. Proc. SPIE, 10978, 109780N(2019).

    [3] L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, A. M. Wodtke. Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: New technology for molecular science. Acc. Chem. Res., 50, 1400-1409(2017).

    [4] L. Elsinger, R. Gourgues, I. E. Zadeh, J. Maes, A. Guardiani, G. Bulgarini, S. F. Pereira, S. N. Dorenbos, V. Zwiller, Z. Hens, D. Van Thourhout. Integration of colloidal pbs/cds quantum dots with plasmonic antennas and superconducting detectors on a silicon nitride photonic platform. Nano Lett., 19, 5452-5458(2019).

    [5] M. Mc Manus, J. Kash, S. Steen, S. Polonsky, J. Tsang, D. Knebel, W. Huott. Pica: Backside failure analysis of CMOS circuits using picosecond imaging circuit analysis. Microelectron. Reliab., 40, 1353-1358(2000).

    [6] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng., 44, 699-710(2006).

    [7] A. Sprague, J. Emery, K. Donaldson, R. Russell, D. Lynch, A. Mazuk. Mercury: mid-infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteorit. Planet. Sci., 37, 1255-1268(2002).

    [8] G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, S. Miki, H. Terai, R. H. Hadfield. Photon counting lidar at 2.3 μm wavelength with superconducting nanowires. Opt. Express, 27, 38147-38158(2019).

    [9] S. Prabhakar, T. Shields, A. C. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, M. Clerici. Two-photon quantum interference and entanglement at 2.1 μm. Sci. Adv., 6, eaay5195(2020).

    [10] C. L. Tan, H. Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).

    [11] J. E. Huffman, A. Crouse, B. Halleck, T. Downes, T. L. Herter. Si: Sb blocked impurity band detectors for infrared astronomy. J. Appl. Phys., 72, 273-275(1992).

    [12] A. Rogalski. Next decade in infrared detectors. Proc. SPIE, 10433, 104330L(2017).

    [13] P. Hu, H. Li, L. You, H. Wang, Y. Xiao, J. Huang, X. Yang, W. Zhang, Z. Wang, X. Xie. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express, 28, 36884-36891(2020).

    [14] J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, I. Esmaeil Zadeh. Detecting telecom single photons with 99.5%(−2.07%, +0.5%) system detection efficiency and high time resolution. APL Photon., 6, 036114(2021).

    [15] D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, V. B. Verma. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica, 7, 1649-1653(2020).

    [16] W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz. IEEE Trans. Appl. Supercond., 29, 2200204(2019).

    [17] H. Shibata, K. Shimizu, H. Takesue, Y. Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40, 3428-3431(2015).

    [18] J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W. H. Pernice, C. Rockstuhl. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 5, 658-665(2018).

    [19] I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, J. Chang, A. W. Elshaari, J. R. Zichi, Y. J. van Staaden, J. P. E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A. W. Fognini, D. R. Schaart, D. Dalacu, P. J. Poole, M. E. Reimer, X. Hu, S. F. Pereira, V. Zwiller, S. N. Dorenbos. Efficient single-photon detection with 7.7 ps time resolution for photon-correlation measurements. ACS Photon., 7, 1780-1787(2020).

    [20] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [21] G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705-707(2001).

    [22] E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, M. D. Shaw. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Opt. Express, 25, 26792-26801(2017).

    [23] J. Chang, I. E. Zadeh, J. W. Los, J. Zichi, A. Fognini, M. Gevers, S. Dorenbos, S. F. Pereira, P. Urbach, V. Zwiller. Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution. Appl. Opt., 58, 9803-9807(2019).

    [24] H. Le Jeannic, V. B. Verma, A. Cavaillès, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, J. Laurat. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. Opt. Lett., 41, 5341-5344(2016).

    [25] G. G. Taylor, D. Morozov, R. H. Hadfield. Mid-infrared photon counting with superconducting nanowires. Proc. SPIE, 11806, 118060K(2021).

    [26] L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, A. M. Wodtke. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. Opt. Express, 26, 14859-14868(2018).

    [27] F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, K. K. Berggren. Efficient single photon detection from 500 nm to 5 μm wavelength. Nano Lett., 12, 4799-4804(2012).

    [28] Q. Chen, R. Ge, L. Zhang, F. Li, B. Zhang, Y. Dai, Y. Fei, X. Wang, X. Jia, Q. Zhao, X. Tu, L. Kang, J. Chen, P. Wu. Mid-infrared single photon detector with superconductor Mo80Si20 nanowire. Sci. Bull., 66, 965-968(2021).

    [29] V. B. Verma, B. Korzh, A. B. Walter, A. E. Lita, R. M. Briggs, M. Colangelo, Y. Zhai, E. E. Wollman, A. D. Beyer, J. P. Allmaras, H. Vora, D. Zhu, E. Schmidt, A. G. Kozorezov, K. K. Berggren, R. P. Mirin, S. W. Nam, M. D. Shaw. Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors. APL Photon., 6, 056101(2021).

    [30] H. Zhou, Y. Pan, L. You, H. Li, Y. Wang, Y. Tang, H. Wang, X. Liu, Z. Wang. Superconducting nanowire single photon detector with efficiency over 60% for 2-μm-wavelength. IEEE Photon. J., 11, 6804107(2019).

    [31] J. Zichi, J. Chang, S. Steinhauer, K. von Fieandt, J. W. N. Los, G. Visser, N. Kalhor, T. Lettner, A. W. Elshaari, I. E. Zadeh, V. Zwiller. Optimizing the stoichiometry of ultrathin NbTiN films for high-performance superconducting nanowire single-photon detectors. Opt. Express, 27, 26579-26587(2019).

    [32] R. Gourgues, J. W. Los, J. Zichi, J. Chang, N. Kalhor, G. Bulgarini, S. N. Dorenbos, V. Zwiller, I. E. Zadeh. Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K. Opt. Express, 27, 24601-24609(2019).

    [33] J. Chang, I. E. Zadeh, J. W. Los, J. Zichi, V. Zwiller. Superconducting nanowire single photon detector with high efficiency and time resolution for multimode fiber coupling. CLEO: QELS_Fundamental Science, FF1A-2(2019).

    [34] A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, S. W. Nam. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express, 19, 9102-9110(2011).

    [35] L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, X. Xie. Jitter analysis of a superconducting nanowire single photon detector. AIP Adv., 3, 072135(2013).

    [36] M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, N. Gippius. Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses. J. Appl. Phys., 108, 014507(2010).

    [37] Y. Cheng, C. Gu, X. Hu. Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors. Appl. Phys. Lett., 111, 062604(2017).

    [38] E. E. Wollman, V. B. Verma, A. E. Lita, W. H. Farr, M. D. Shaw, R. P. Mirin, S. W. Nam. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express, 27, 35279-35289(2019).

    [39] J. Huang, W. Zhang, L. You, C. Zhang, C. Lv, Y. Wang, X. Liu, H. Li, Z. Wang. High speed superconducting nanowire single-photon detector with nine interleaved nanowires. Supercond. Sci. Technol., 31, 074001(2018).

    [40] A. E. Dane, A. N. McCaughan, D. Zhu, Q. Zhao, C.-S. Kim, N. Calandri, A. Agarwal, F. Bellei, K. K. Berggren. Bias sputtered NBN and superconducting nanowire devices. Appl. Phys. Lett., 111, 122601(2017).

    [41] W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, X. Xie. Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering. Phys. Rev. Appl., 12, 044040(2019).

    [42] I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, S. N. Dorenbos. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photon., 2, 111301(2017).

    [43] A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, D. E. Prober. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors. J. Appl. Phys., 108, 084507(2010).

    [44] H. Shibata, K. Fukao, N. Kirigane, S. Karimoto, H. Yamamoto. SNSPD with ultimate low system dark count rate using various cold filters. IEEE Trans. Appl. Supercond., 27, 2200504(2016).

    [45] X. Zhang, A. Engel, Q. Wang, A. Schilling, A. Semenov, M. Sidorova, H.-W. Hübers, I. Charaev, K. Ilin, M. Siegel. Characteristics of superconducting tungsten silicide WxSi1-x for single photon detection. Phys. Rev. B, 94, 174509(2016).

    [46] E. Antonova, D. Dzhuraev, G. Motulevich, V. Sukhov. Superconducting energy gap in niobium nitride. Zh. Eksp. Teor. Fiz., 80, 2426-2429(1981).

    Jin Chang, Johannes W. N. Los, Ronan Gourgues, Stephan Steinhauer, S. N. Dorenbos, Silvania F. Pereira, H. Paul Urbach, Val Zwiller, Iman Esmaeil Zadeh. Efficient mid-infrared single-photon detection using superconducting NbTiN nanowires with high time resolution in a Gifford-McMahon cryocooler[J]. Photonics Research, 2022, 10(4): 1063
    Download Citation