[1] B. Matthias, J. Remeika. Ferroelectricity in the ilmenite structure. Phys. Rev., 76, 1886-1887(1949).
[2] R. Weis, T. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191-203(1985).
[3] E. L. Wooten et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69-82(2000).
[4] L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Stat. Solidi A, 201, 253-283(2004).
[5] D. Janner et al. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev., 3, 301-313(2009).
[6] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488-503(2012).
[7] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 12, 1700256(2018).
[8] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photonics Rev., 14, 2000088(2020).
[9] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).
[10] G. T. Reed et al. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).
[11] M. Smit et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol., 29, 083001(2014).
[12] M. Yamada et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett., 62, 435-436(1993).
[13] K. Mizuuchi, K. Yamamoto, M. Kato. Harmonic blue light generation in bulk periodically poled MgO:LiNbO3. Electron. Lett., 32, 2091-2092(1996). https://doi.org/10.1049/el:19961366
[14] K. R. Parameswaran et al. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 27, 179-181(2002).
[15] S. Saravi, T. Pertsch, F. Setzpfandt. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater., 9, 2100789(2021).
[16] L. Cai et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res., 7, 1003-1013(2019).
[17] L. Shao et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).
[18] J. Y. Suen et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica, 4, 276-279(2017).
[19] R. Schmidt, I. Kaminow. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett., 25, 458-460(1974). https://doi.org/10.1063/1.1655547
[20] J. Jackel, C. Rice. Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3. Ferroelectrics, 38, 801-804(1981). https://doi.org/10.1080/00150198108209543
[21] J. L. Jackel, C. Rice, J. Veselka. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett., 41, 607-608(1982). https://doi.org/10.1063/1.93615
[22] G. Chen et al. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt. Express, 24, 10030-10039(2016).
[23] G. Chen et al. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit. Opt. Express, 24, 14841-14850(2016).
[24] G. Chen, Y. Yu, X. Zhang. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection. Opt. Lett., 41, 3543-3546(2016).
[25] M. Ye et al. On-chip WDM mode-division multiplexing interconnection with optional demodulation function. Opt. Express, 23, 32130-32138(2015).
[26] D. Zhou et al. Germanium photodetector with distributed absorption regions. Opt. Express, 28, 19797-19807(2020).
[27] Y. Yu et al. Intra-chip optical interconnection based on polarization division multiplexing photonic integrated circuit. Opt. Express, 25, 28330-28336(2017).
[28] G. Chen, Y. Yu, X. Zhang. Optical phase erasure and wavelength conversion using silicon nonlinear waveguide with reverse biased PIN junctions. IEEE Photonics J., 7, 7102808(2015).
[29] S. Kurimura et al. Quasi-phase-matched adhered ridge waveguide in LiNbO3. Appl. Phys. Lett., 89, 191123(2006). https://doi.org/10.1063/1.2387940
[30] T. Umeki, O. Tadanaga, M. Asobe. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J. Quantum Electron., 46, 1206-1213(2010).
[31] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[32] P. De Nicola et al. Fabrication of smooth ridge optical waveguides in LiNbO3 by ion implantation-assisted wet etching. J. Lightwave Technol., 31, 1482-1487(2013). https://doi.org/10.1109/JLT.2013.2252881
[33] J. Zhou et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).
[34] B. Desiatov, M. Lončar. Silicon photodetector for integrated lithium niobate photonics. Appl. Phys. Lett., 115, 121108(2019).
[35] Z. Yu et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).
[36] K. Nassau, H. Levinstein, G. Loiacono. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Solids, 27, 983-988(1966).
[37] K. Nassau, H. Levinstein, G. Loiacono. Ferroelectric lithium niobate. 2. Preparation of single domain crystals. J. Phys. Chem. Solids, 27, 989-996(1966).
[38] S. Abrahams, J. M. Reddy, J. Bernstein. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24ºC. J. Phys. Chem. Solids, 27, 997-1012(1966).
[39] S. Abrahams, W. C. Hamilton, J. Reddy. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24ºC. J. Phys. Chem. Solids, 27, 1013-1018(1966).
[40] S. Abrahams, H. Levinstein, J. Reddy. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200°C. J. Phys. Chem. Solids, 27, 1019-1026(1966).
[41] R. W. Boyd. The electrooptic and photorefractive effects. Nonlinear Optics, 511-541(2008).
[42] B. Desiatov et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).
[43] T.-J. Wang, C.-H. Chu, C.-Y. Lin. Electro-optically tunable microring resonators on lithium niobate. Opt. Lett., 32, 2777-2779(2007).
[44] J. Mishra et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica, 8, 921-924(2021).
[45] C. Thierfelder et al. Do we know the band gap of lithium niobate?. Phys. Stat. Solidi C, 7, 362-365(2010).
[46] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals, 64(2013).
[47] M. Bache, R. Schiek. Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response(2012).
[48] A. Savage. Pyroelectricity and spontaneous polarization in LiNbO3. J. Appl. Phys., 37, 3071-3072(1966). https://doi.org/10.1063/1.1703164
[49] S. Yao et al. Growth, optical and thermal properties of near-stoichiometric LiNbO3 single crystal. J. Alloys Compd., 455, 501-505(2008). https://doi.org/10.1016/j.jallcom.2007.02.001
[50] L. Moretti et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J. Appl. Phys., 98, 036101(2005).
[51] A. W. Warner, M. Onoe, G. A. Coquin. Determination of elastic and piezoelectric constants for crystals in class (3m). J. Acoust. Soc. Am., 42, 1223-1231(1967).
[52] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).
[53] L. Gui et al. Local periodic poling of ridges and ridge waveguides on X- and Y-cut LiNbO3 and its application for second harmonic generation. Opt. Express, 17, 3923-3928(2009). https://doi.org/10.1364/OE.17.003923
[54] L. Chang et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).
[55] C. Wang et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).
[56] C. Wang et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963-6973(2017).
[57] R. Luo et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).
[58] C. Wang et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).
[59] A. Boes et al. Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage. Opt. Express, 27, 23919-23928(2019).
[60] J.-Y. Chen et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).
[61] J.-Y. Chen et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Continuum, 2, 2914-2924(2019).
[62] J. Lin et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).
[63] J. Lu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).
[64] M. Jankowski et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).
[65] Y. Niu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).
[66] B. Mu et al. Locally periodically poled LNOI ridge waveguide for second harmonic generation. Chin. Opt. Lett., 19, 060007(2021).
[67] R. V. Roussev et al. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett., 29, 1518-1520(2004).
[68] X. Ye et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett., 45, 523-526(2020).
[69] K. Sasagawa, M. Tsuchiya. Highly efficient third harmonic generation in a periodically poled MgO:LiNbO3 disk resonator. Appl. Phys Express, 2, 122401(2009). https://doi.org/10.1143/APEX.2.122401
[70] L. Ledezma et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).
[71] J. Lu et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).
[72] M. Leidinger et al. Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators. Opt. Lett., 41, 2823-2826(2016).
[73] M. Yu et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci. Appl., 9, 9(2020).
[74] Z. Gong et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019). https://doi.org/10.1364/OL.44.003182
[75] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019). https://doi.org/10.1364/OPTICA.6.001138
[76] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).
[77] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).
[78] J. Lu et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492-1495(2019).
[79] M. Yu et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).
[80] S. Tanzilli et al. PPLN waveguide for quantum communication. Eur. Phys. J. D, 18, 155-160(2002).
[81] Z. Ma et al. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).
[82] J. Zhao et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).
[83] G.-T. Xue et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).
[84] W. B. Tiffany. Introduction and review of pyroelectric detectors. Proc. SPIE, 0062, 153-158(1976).
[85] X. Liu et al. Highly efficient thermo-optic tunable microring resonator based on an LNOI platform. Opt. Lett., 45, 6318-6321(2020).
[86] G. Chen et al. Integrated thermally tuned mach-zehnder interferometer in Z-cut lithium niobate thin film. IEEE Photonics Technol. Lett., 33, 664-667(2021).
[87] G. Chen, H.-L. Lin, A. Danner. Highly efficient thermal tuning interferometer in lithium niobate thin film using air bridge. IEEE Photonics J., 13, 6600409(2021).
[88] M. Xu et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).
[89] E. S. Magden et al. Frequency domain spectroscopy in rare-earth-doped gain media. IEEE J. Sel. Top. Quantum Electron., 24, 3000110(2018).
[90] M. Xin et al. Optical frequency synthesizer with an integrated erbium tunable laser. Light Sci. Appl., 8, 122(2019).
[91] J. H. Marsh, W. Sohler, R. M. De La Rue. Rare earth doped LiNbO3 waveguide amplifiers and lasers. Waveguide Optoelectronics, 361-394(1992).
[92] Z. Chen et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161-1164(2021).
[93] Z. Wang et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett., 46, 380-383(2021).
[94] S. Dutta et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett., 20, 741-747(2020).
[95] S. Wang et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett., 116, 151103(2020).
[96] M. Armenise. Fabrication techniques of lithium niobate waveguides. IEE Proc., 135, 85-91(1988).
[97] I. Kaminow, J. Carruthers. Optical waveguiding layers in LiNbO3 and LiTaO3. Appl. Phys. Lett., 22, 326-328(1973). https://doi.org/10.1063/1.1654657
[98] J. Noda et al. Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion. Appl. Phys. Lett., 27, 19-21(1975). https://doi.org/10.1063/1.88271
[99] J. R. Carruthers, I. P. Kaminow, L. W. Stulz. Diffusion kinetics and optical waveguiding properties of outdiffused layers in lithium niobate and lithium tantalate. Appl. Opt., 13, 2333-2342(1974).
[100] R. L. Holman, P. J. Cressman, J. F. Revelli. Chemical control of optical damage in lithium niobate. Appl. Phys. Lett., 32, 280-283(1978).
[101] G. D. Boyd, R. V. Schmidt, F. Storz. Characteristics of metal-diffused LiNbO3 for acoustic devices. J. Appl. Phys., 48, 2880-2881(1977). https://doi.org/10.1063/1.324096
[102] M. Fukuma, J. Noda, H. Iwasaki. Optical properties in titanium-diffused LiNbO3 strip waveguides. J. Appl. Phys., 49, 3693-3698(1978). https://doi.org/10.1063/1.325409
[103] M. Minakata et al. Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides. J. Appl. Phys., 49, 4677-4682(1978). https://doi.org/10.1063/1.325537
[104] J. Campbell. Coupling of fibers to Ti-diffused LiNbO3 waveguides by butt-joining. Appl. Opt., 18, 2037-2040(1979). https://doi.org/10.1364/AO.18.002037
[105] A. Neyer, W. Sohler. High-speed cutoff modulator using a Ti-diffused LiNbO3 channel waveguide. Appl. Phys. Lett., 35, 256-258(1979). https://doi.org/10.1063/1.91091
[106] M. Feit, J. Fleck, L. McCaughan. Comparison of calculated and measured performance of diffused channel-waveguide couplers. J. Opt. Soc. Am., 73, 1296-1304(1983).
[107] J. Ctyroky et al. 3-D analysis of LiNbO3:Ti channel waveguides and directional couplers. IEEE J. Quantum Electron., 20, 400-409(1984). https://doi.org/10.1109/JQE.1984.1072414
[108] P.-K. Wei, W.-S. Wang. A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions. IEEE Photonics Technol. Lett., 6, 245-248(1994).
[109] W.-L. Chen et al. Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet etching. IEEE Photonics Technol. Lett., 7, 1318-1320(1995).
[110] Y.-P. Liao et al. Nickel-diffused lithium niobate optical waveguide with process-dependent polarization. IEEE Photonics Technol. Lett., 8, 548-550(1996).
[111] R. Nevado, G. Lifante. Characterization of index profiles of Zn-diffused LiNbO3 waveguides. J. Opt. Soc. Am. A, 16, 2574-2580(1999). https://doi.org/10.1364/JOSAA.16.002574
[112] D. Ciplys et al. Guided-wave acousto-optic diffraction in Zn:LiNbO3. Electron. Lett., 42, 1294-1295(2006). https://doi.org/10.1049/el:20061705
[113] M. Fukuma, J. Noda. Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl. Opt., 19, 591-597(1980). https://doi.org/10.1364/AO.19.000591
[114] W. Minford, S. Korotky, R. Alferness. Low-loss Ti:LiNbO3 waveguide bends at λ = 1.3 μm. IEEE J. Quantum Electron., 18, 1802-1806(1982). https://doi.org/10.1109/JQE.1982.1071389
[115] D. White et al. Atomically-thin quantum dots integrated with lithium niobate photonic chips. Opt. Mater. Express, 9, 441-448(2019).
[116] G. Sia et al. Fabrication and characterization of proton-exchanged waveguide on x-cut LiNbO3. IEEE PhotonicsGlobal@Singapore(2008). https://doi.org/10.1109/IPGC.2008.4781358
[117] K. Ito, K. Kawamoto. Dependence of lattice constant deviation and refractive index on proton concentration in proton-exchanged optical waveguides on a single crystal of LiNbO3. Jpn. J. Appl. Phys., 31, 3882-3887(1992). https://doi.org/10.1143/JJAP.31.3882
[118] V. M. Passaro et al. LiNbO3 optical waveguides formed in a new proton source. J. Lightwave Technol., 20, 71-77(2002). https://doi.org/10.1109/50.974820
[119] W. J. Liao et al. Proton-exchanged optical waveguides fabricated by glutaric acid. Opt. Laser Technol., 36, 603-606(2004).
[120] T. Fujiwara et al. Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides. Opt. Lett., 18, 346-348(1993). https://doi.org/10.1364/OL.18.000346
[121] L. Cai, Y. Kang, H. Hu. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film. Opt. Express, 24, 4640-4647(2016).
[122] P. Suchoski, T. K. Findakly, F. Leonberger. Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Opt. Lett., 13, 1050-1052(1988). https://doi.org/10.1364/OL.13.001050
[123] S. T. Vohra, A. R. Mickelson, S. E. Asher. Diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides. J. Appl. Phys., 66, 5161-5174(1989). https://doi.org/10.1063/1.343751
[124] J. Rams, F. Agullo-Rueda, J. Cabrera. Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients. Appl. Phys. Lett., 71, 3356-3358(1997). https://doi.org/10.1063/1.120336
[125] O. Stepanenko et al. Highly confining proton exchanged waveguides on Z-cut LiNbO3 with preserved nonlinear coefficient. IEEE Photonics Technol. Lett., 26, 1557-1560(2014). https://doi.org/10.1109/LPT.2014.2329134
[126] L. Cai et al. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film. Opt. Express, 23, 29211-29221(2015).
[127] M. L. Shah. Optical waveguides in LiNbO3 by ion exchange technique. Appl. Phys. Lett., 26, 652-653(1975). https://doi.org/10.1063/1.88014
[128] J. Jackel. High-Δn optical waveguides in LiNbO3:thallium-lithium ion exchange. Appl. Phys. Lett., 37, 739-741(1980). https://doi.org/10.1063/1.92016
[129] Y. X. Chen et al. Characterization of LiNbO3 waveguides exchanged in TlNO3 solution. Appl. Phys. Lett., 40, 10-12(1982). https://doi.org/10.1063/1.92915
[130] J. L. Jackel, C. Rice. Variation in waveguides fabricated by immersion of LiNbO3 in AgNO3 and TlNO3: the role of hydrogen. Appl. Phys. Lett., 41, 508-510(1982). https://doi.org/10.1063/1.93589
[131] M. Zhang et al. Electro-optic reconfigurable two-mode (de)-multiplexer on thin-film lithium niobate. Opt. Lett., 46, 1001-1004(2021).
[132] G. Destefanis, P. Townsend, J. Gailliard. Optical waveguides in LiNbO3 formed by ion implantation of helium. Appl. Phys. Lett., 32, 293-294(1978). https://doi.org/10.1063/1.90025
[133] G. Destefanis et al. The formation of waveguides and modulators in LiNbO3 by ion implantation. J. Appl. Phys., 50, 7898-7905(1979). https://doi.org/10.1063/1.325982
[134] G. Destefanis, J. Gailliard, P. Townsend. Optical waveguides in LiNbO3 formed by ion implantation. Radiat. Eff., 48, 63-67(1980). https://doi.org/10.1080/00337578008209230
[135] H. Karge et al. Radiation damage and refractive index of ion-implanted LiNbO3. Nucl. Instrum. Methods, 182–183, 777-780(1981). https://doi.org/10.1016/0029-554X(81)90809-0
[136] S. Al-Chalabi. Transient annealing of planar waveguides formed by 4He+ ion implantation into LiNbO3. Radiat. Eff., 98, 227-231(1986). https://doi.org/10.1080/00337578608206113
[137] I. Skinner et al. The modelling of lithium outdiffusion in He+ implanted optical waveguides in LiNbO3. Solid-State Electron., 30, 85-88(1987). https://doi.org/10.1016/0038-1101(87)90033-5
[138] G. Si et al. Suspended slab and photonic crystal waveguides in lithium niobate. J. Vac. Sci. Technol. B, 28, 316-320(2010).
[139] G. Griffel, S. Ruschin, N. Croitoru. Linear electro-optic effect in sputtered polycrystalline LiNbO3 films. Appl. Phys. Lett., 54, 1385-1387(1989). https://doi.org/10.1063/1.101406
[140] D. K. Fork, G. B. Anderson. Epitaxial MgO on GaAs(111) as a buffer layer for z-cut epitaxial lithium niobate. Appl. Phys. Lett., 63, 1029-1031(1993).
[141] Y. Sakashita, H. Segawa. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys., 77, 5995-5999(1995). https://doi.org/10.1063/1.359183
[142] M. Levy et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).
[143] A. Radojevic et al. Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films. Appl. Phys. Lett., 74, 3197-3199(1999). https://doi.org/10.1063/1.124115
[144] T. A. Ramadan, M. Levy, R. Osgood. Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films. Appl. Phys. Lett., 76, 1407-1409(2000). https://doi.org/10.1063/1.126046
[145] P. Rabiei, P. Gunter. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett., 85, 4603-4605(2004).
[146] G. Poberaj et al. Ion-sliced lithium niobate thin films for active photonic devices. Opt. Mater., 31, 1054-1058(2009).
[147] T. Volk, M. Wöhlecke. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, 115(2008).
[148] M. Chauvet et al. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon. J. Opt., 18, 085503(2016). https://doi.org/10.1088/2040-8978/18/8/085503
[149] M. Bock et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt. Express, 24, 23992-24001(2016).
[150] A. S. Kowligy et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Opt. Lett., 43, 1678-1681(2018).
[151] L. Lehmann et al. Single photon MIR upconversion detector at room temperature with a PPLN ridge waveguide. Opt. Express, 27, 19233-19241(2019).
[152] R. Bege et al. Watt-level second-harmonic generation at 589 nm with a PPMgO:LN ridge waveguide crystal pumped by a DBR tapered diode laser. Opt. Lett., 41, 1530-1533(2016).
[153] V. Pecheur et al. Watt-level SHG in undoped high step-index PPLN ridge waveguides. OSA Continuum, 4, 1404-1414(2021).
[154] S. A. Berry et al. Zn-indiffused diced ridge waveguides in MgO:PPLN generating 1 watt 780 nm SHG at 70% efficiency. OSA Continuum, 2, 3456-3464(2019).
[155] M. E. Solmaz et al. Vertically integrated As2S3 ring resonator on LiNbO3. Opt. Lett., 34, 1735-1737(2009). https://doi.org/10.1364/OL.34.001735
[156] Y. S. Lee et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices. Opt. Lett., 36, 1119-1121(2011). https://doi.org/10.1364/OL.36.001119
[157] L. Chen, R. M. Reano. Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings. Opt. Express, 20, 4032-4038(2012).
[158] P. Rabiei et al. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).
[159] L. Cao et al. Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator. Opt. Commun., 330, 40-44(2014). https://doi.org/10.1016/j.optcom.2014.05.021
[160] L. Chen et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).
[161] F. Bo et al. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 27, 8075-8081(2015).
[162] S. Jin et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett., 28, 736-739(2016). https://doi.org/10.1109/LPT.2015.2507136
[163] S. Li et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express, 23, 24212-24219(2015).
[164] A. Rao et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).
[165] A. Rao et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).
[166] L. Chang et al. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Opt. Lett., 42, 803-806(2017).
[167] J. D. Witmer et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep., 7, 46313(2017).
[168] A. N. R. Ahmed et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett., 45, 1112-1115(2020).
[169] A. N. R. Ahmed et al. High-efficiency lithium niobate modulator for K band operation. APL Photonics, 5, 091302(2020).
[170] N. Boynton et al. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express, 28, 1868-1884(2020).
[171] D. Pohl et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics, 14, 24-29(2020).
[172] A. A. Sayem et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl. Phys. Lett., 116, 151102(2020).
[173] Z. Yu et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).
[174] Y. Yu et al. Ultralow-loss etchless lithium niobate integrated photonics at near-visible wavelengths. Adv. Opt. Mater., 9, 2100060(2021).
[175] G. Chen et al. Analysis of perovskite oxide etching using argon inductively coupled plasmas for photonics applications. Nanoscale Res. Lett., 16, 32(2021).
[176] J. Jian et al. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 26, 29651-29658(2018).
[177] Z. Ruan et al. Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express, 28, 35615-35621(2020).
[178] J. L. Jackel et al. Reactive ion etching of LiNbO3. Appl. Phys. Lett., 38, 907-909(1981). https://doi.org/10.1063/1.92177
[179] H. Nagata et al. Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates. J. Cryst. Growth, 187, 573-576(1998). https://doi.org/10.1016/S0022-0248(98)00009-8
[180] H. Nagata et al. Chemical deterioration of Al film prepared on CF4 plasma-etched LiNbO3 surface. J. Mater. Res., 15, 476-482(2000). https://doi.org/10.1557/JMR.2000.0071
[181] A. Guarino et al. Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics, 1, 407-410(2007).
[182] Z. Ren et al. Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. J. Appl. Phys., 103, 034109(2008). https://doi.org/10.1063/1.2838180
[183] S. Benchabane et al. Highly selective electroplated nickel mask for lithium niobate dry etching. J. Appl. Phys., 105, 094109(2009).
[184] H. Hu, R. Ricken, W. Sohler. Lithium niobate photonic wires. Opt. Express, 17, 24261-24268(2009).
[185] J. Deng, G. Si, A. J. Danner. Dry etching of LiNbO3 using inductively coupled plasma. Photonics Global Conf.(2010). https://doi.org/10.1109/PGC.2010.5706006
[186] G. Si et al. Nanoscale arrays in lithium niobate fabricated by interference lithography and dry etching. Int. J. Nanosci., 9, 311-315(2010).
[187] G. Ulliac et al. Ultra-smooth LiNbO3 micro and nano structures for photonic applications. Microelectron. Eng., 88, 2417-2419(2011). https://doi.org/10.1016/j.mee.2011.02.024
[188] D. Jun et al. Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas. J. Vac. Sci. Technol. B, 30, 011208(2012). https://doi.org/10.1116/1.3674282
[189] C.-M. Chang et al. A parametric study of ICP-RIE etching on a lithium niobate substrate. 10th IEEE Int. Conf. Nano/Micro Eng. and Mol. Syst.(2015).
[190] G. Ulliac et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt. Mater., 53, 1-5(2016).
[191] I. Krasnokutska et al. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 26, 897-904(2018).
[192] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).
[193] M. Bahadori et al. High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform. Opt. Express, 27, 22025-22039(2019).
[194] A. A. Osipov, S. E. Alexandrov, G. A. Iankevich. The effect of a lithium niobate heating on the etching rate in SF6 ICP plasma. Mater. Res. Express, 6, 046306(2019).
[195] C. Shen et al. A comparative study of dry-etching nanophotonic devices on a LiNbO3-on-insulator material platform. Proc. SPIE, 11781, 117810X(2021). https://doi.org/10.1117/12.2590415
[196] A. A. Osipov et al. Deep etching of LiNbO3 using inductively coupled plasma in SF6-based gas mixture. J. Microelectromech. Syst., 30, 90-95(2021). https://doi.org/10.1109/JMEMS.2020.3039350
[197] H. Liang et al. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).
[198] T. L. Ting, L. Y. Chen, W. S. Wang. Wet etching X-cut LiNbO3 using diluted joint proton source. Microwave Opt. Technol. Lett., 48, 2108-2111(2006). https://doi.org/10.1002/mop.21874
[199] F. Laurell et al. Wet etching of proton-exchanged lithium niobate-a novel processing technique. J. Lightwave Technol., 10, 1606-1609(1992).
[200] H. Lee, S.-Y. Shin. Lithium niobate ridge waveguides fabricated by wet etching. Electron. Lett., 31, 268-269(1995).
[201] R.-S. Cheng, T.-J. Wang, W.-S. Wang. Wet-etched ridge waveguides in Y-cut lithium niobate. J. Lightwave Technol., 15, 1880-1887(1997).
[202] T.-J. Wang et al. A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3. J. Lightwave Technol., 22, 1764-1771(2004). https://doi.org/10.1109/JLT.2004.829229
[203] I. Azanova et al. Chemical etching technique for investigations of a structure of annealed and unannealed proton exchange channel LiNbO3 waveguides. Ferroelectrics, 374, 110-121(2008). https://doi.org/10.1080/00150190802427234
[204] Y. Li et al. Research of selective etching in LiNbO3 using proton-exchanged wet etching technique. Mater. Res. Express, 7, 056202(2020). https://doi.org/10.1088/2053-1591/ab8e70
[205] H. Hu et al. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technol. Lett., 19, 417-419(2007).
[206] L. Wang et al. Selective etching in LiNbO3 combined of MeV O and Si ion implantation with wet-etch technique. Surf. Coat. Technol., 201, 5081-5084(2007). https://doi.org/10.1016/j.surfcoat.2006.07.145
[207] H. Hartung et al. Ultra thin high index contrast photonic crystal slabs in lithium niobate. Opt. Mater., 33, 19-21(2010).
[208] F. Lacour et al. Nanostructuring lithium niobate substrates by focused ion beam milling. Opt. Mater., 27, 1421-1425(2005).
[209] G. Si et al. Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling. J. Vac. Sci. Technol. B, 29, 021205(2011).
[210] R. Geiss et al. Photonic crystals in lithium niobate by combining focused ion beam writing and ion-beam enhanced etching. Phys. Stat. Solidi A, 211, 2421-2425(2014).
[211] M. Qu et al. Homogenous and ultra-shallow lithium niobate etching by focused ion beam. Precis. Eng., 62, 10-15(2020).
[212] N. Courjal et al. High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D Appl. Phys., 44, 305101(2011).
[213] M. F. Volk et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Opt. Express, 24, 1386-1391(2016).
[214] J. Lin et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep., 5, 8072(2015).
[215] Z. Fang et al. Fabrication of high quality factor lithium niobate double-disk using a femtosecond laser. Int. J. Optomechatron., 11, 47-54(2017).
[216] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626-3629(2017).
[217] M. Wang et al. On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Opt. Express, 25, 124-129(2017).
[218] R. Wu et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018).
[219] R. Wu et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).
[220] M. Wang et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).
[221] J. Zhang et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator. Nanomaterials, 9, 1218(2019).
[222] Z. Fang et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. Opt. Lett., 44, 1214-1217(2019).
[223] N. Yao et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Opt. Express, 28, 12416-12423(2020).
[224] R. Gao et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).
[225] X. C. Tong. Characterization methodologies of optical waveguides. Advanced Materials for Integrated Optical Waveguides, 53-102(2014).
[226] S. Y. Siew et al. Rib microring resonators in lithium niobate on insulator. IEEE Photonics Technol. Lett., 28, 573-576(2016).
[227] J. Moore et al. Continuous-wave cascaded-harmonic generation and multi-photon Raman lasing in lithium niobate whispering-gallery resonators. Appl. Phys. Lett., 99, 221111(2011).
[228] C. Wang et al. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).
[229] C. Wang et al. Integrated lithium niobate nonlinear optical devices(2015).
[230] J. Wang et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072-23078(2015).
[231] Y. He et al. Dispersion engineered high quality lithium niobate microring resonators. Opt. Express, 26, 16315-16322(2018).
[232] L. Ge et al. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by ‘light annealing’. Opt. Mater. Express, 9, 1632-1639(2019).
[233] S. Liu et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett., 44, 1456-1459(2019).
[234] L. Zhang et al. Microdisk resonators with lithium-niobate film on silicon substrate. Opt. Express, 27, 33662-33669(2019).
[235] Y. Zheng et al. High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator. Phys. Rev. Lett., 122, 253902(2019).
[236] J. Ling et al. Athermal lithium niobate microresonator. Opt. Express, 28, 21682-21691(2020).
[237] R. Wang, S. A. Bhave. Lithium niobate optomechanical disk resonators(2020).
[238] R. Gao et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131-3134(2021).
[239] B. Pan et al. Compact racetrack resonator on LiNbO3. J. Lightwave Technol., 39, 1770-1776(2021). https://doi.org/10.1109/JLT.2020.3040387
[240] Y. Xu et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express, 29, 5497-5504(2021).
[241] M. Li et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).
[242] M. Xu et al. Integrated thin film lithium niobate Fabry–Perot modulator. Chin. Opt. Lett., 19, 060003(2021).
[243] D. Pohl et al. 100-GBd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol. Lett., 33, 85-88(2021).
[244] Z. Gong et al. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator. Opt. Commun., 396, 23-27(2017).
[245] L. Cai, G. Piazza. Low-loss chirped grating for vertical light coupling in lithium niobate on insulator. J. Opt., 21, 065801(2019).
[246] L. He et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 44, 2314-2317(2019).
[247] A. Kar et al. Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate. Opt. Express, 27, 15856-15867(2019).
[248] I. Krasnokutska et al. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express, 27, 17681-17685(2019).
[249] I. Krasnokutska, J.-L. J. Tambasco, A. Peruzzo. Nanostructuring of LNOI for efficient edge coupling. Opt. Express, 27, 16578-16585(2019).
[250] A. Pan et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).
[251] Q. Xu et al. A theoretical study on rib-type photonic wires based on LiNbO3 thin film on insulator. Adv. Theor. Simul., 2, 1900115(2019). https://doi.org/10.1002/adts.201900115
[252] Z. Chen, Y. Ning, Y. Xun. Chirped and apodized grating couplers on lithium niobate thin film. Opt. Mater. Express, 10, 2513-2521(2020).
[253] Z. Gong et al. Tunable microwave photonic filter based on LNOI polarization beam splitter and waveguide grating. IEEE Photonics Technol. Lett., 32, 787-790(2020).
[254] C. C. Kores, M. Fokine, F. Laurell. UV-written grating couplers on thin-film lithium niobate ridge waveguides. Opt. Express, 28, 27839-27849(2020).
[255] Y. Liu et al. TE/TM-pass polarizers based on lateral leakage in a thin film lithium niobate–silicon nitride hybrid platform. Opt. Lett., 45, 4915-4918(2020).
[256] D. Pohl et al. Tunable Bragg grating filters and resonators in lithium niobate-on-insulator waveguides(2020).
[257] A. Prencipe, M. A. Baghban, K. Gallo. Ultra-narrowband Bragg grating filters in LiNbO3 on insulator photonic wires(2020).
[258] G. Qian et al. Design and fabrication of cantilevered fiber-to-waveguide mode size converter for thin-film lithium niobate photonic integrated circuits. Proc. SPIE, 11455, 1145587(2020).
[259] K. Shuting et al. High-efficiency chirped grating couplers on lithium niobate on insulator. Opt. Lett., 45, 6651-6654(2020).
[260] S. Tan et al. Two-dimensional beam steering based on LNOI optical phased array(2020).
[261] H. Xu et al. Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach–Zehnder interferometer on the x-cut lithium-niobate-on-insulator. Opt. Express, 28, 10899-10908(2020).
[262] L. Zhang, X. Fu, L. Yang. Polarization-independent, lithium-niobate-on-insulator directional coupler based on a combined coupling-sections design. Appl. Opt., 59, 8668-8673(2020).
[263] J.-X. Zhou et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 8084201(2020).
[264] K. Abdelsalam et al. Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate. Opt. Lett., 46, 2730-2733(2021).
[265] B. Chen et al. Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Opt. Express, 29, 1289-1295(2021).
[266] C. Hu et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397-5406(2021).
[267] Y. Liu et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations. J. Lightwave Technol., 39, 5925-5932(2021).
[268] E. Lomonte, F. Lenzini, W. H. P. Pernice. Efficient self-imaging grating couplers on a lithium-niobate-on-insulator platform at near-visible and telecom wavelengths. Opt. Express, 29, 20205-20216(2021).
[269] S. Yang et al. Low loss ridge-waveguide grating couplers in lithium niobate on insulator. Opt. Mater. Express, 11, 1366-1376(2021).
[270] G. Chen, Y. Yu, X. Zhang. A dual-detector optical receiver for PDM signals detection. Sci. Rep., 6, 26469(2016).
[271] R. Alferness et al. Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 μm. IEEE J. Quantum Electron., 18, 1807-1813(1982). https://doi.org/10.1109/JQE.1982.1071390
[272] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).
[273] J. Jian et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt. Express, 27, 18731-18739(2019).
[274] M. Jin et al. High-extinction electro-optic modulation on lithium niobate thin film. Opt. Lett., 44, 1265-1268(2019).
[275] T. Ren et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett., 31, 889-892(2019).
[276] M. Xu et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics, 4, 100802(2019).
[277] S. Sun et al. Bias-drift-free Mach–Zehnder modulators based on a heterogeneous silicon and lithium niobate platform. Photonics Res., 8, 1958-1963(2020).
[278] J. Hu et al. Folded thin-film lithium niobate modulator based on a poled Mach–Zehnder interferometer structure. Opt. Lett., 46, 2940-2943(2021).
[279] X. Huang et al. 40 GHz high-efficiency Michelson interferometer modulator on a silicon-rich nitride and thin-film lithium niobate hybrid platform. Opt. Lett., 46, 2811-2814(2021).
[280] N. Jagatpal et al. Thin film lithium niobate electro-optic modulator for 1064 nm wavelength. IEEE Photonics Technol. Lett., 33, 271-274(2021).
[281] M. Jin et al. Efficient electro-optical modulation on thin-film lithium niobate. Opt. Lett., 46, 1884-1887(2021).
[282] P. Kharel et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).
[283] X. Liu et al. Low half-wave-voltage, ultra-high bandwidth thin-film LiNbO3 modulator based on hybrid waveguide and periodic capacitively loaded electrodes(2021).
[284] Y. Liu et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320-6329(2021).
[285] B. Pan et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021).
[286] X. Ye et al. High-speed programmable lithium niobate thin film spatial light modulator. Opt. Lett., 46, 1037-1040(2021).
[287] P. Ying et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt. Lett., 46, 1478-1481(2021).
[288] G. Chen et al. Integrated electro-optic modulator in z-cut lithium niobate thin film with vertical structure. IEEE Photonics Technol. Lett., 33, 1285-1288(2021).
[289] J. Kondo et al. 40-Gb/s X-cut LiNbO3 optical modulator with two-step back-slot structure. J. Lightwave Technol., 20, 2110-2114(2002). https://doi.org/10.1109/JLT.2002.806766
[290] M. García-Granda et al. Design and fabrication of novel ridge guide modulators in lithium niobate. J. Lightwave Technol., 27, 5690-5697(2009).
[291] H. Lu et al. Optical and RF characterization of a lithium niobate photonic crystal modulator. IEEE Photonics Technol. Lett., 26, 1332-1335(2014).
[292] M. Mahmoud et al. Lithium niobate electro-optic racetrack modulator etched in Y-cut LNOI platform. IEEE Photonics J., 10, 6600410(2018).
[293] Y. Yamaguchi et al. Experimental evaluation of wavelength-dependence of thin-film LiNbO3 modulator with an extinction-ratio-tunable structure. 24th OptoElectron. and Commun. Conf. and Int. Conf. Photonics Switch. and Comput.(2019). https://doi.org/10.23919/PS.2019.8818043
[294] M. Xu et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).
[295] X. Zhang et al. An optical switch based on electro-optic mode deflection in lithium niobate waveguide. IEEE Photonics Technol. Lett., 32, 1295-1298(2020).
[296] G. Chen et al. Design and fabrication of high-performance multimode interferometer in lithium niobate thin film. Opt. Express, 29, 15689-15698(2021).
[297] X. P. Li, K. X. Chen, L. F. Wang. Compact and electro-optic tunable interleaver in lithium niobate thin film. Opt. Lett., 43, 3610-3613(2018).
[298] M. Zhang et al. Electronically programmable photonic molecule. Nat. Photonics, 13, 36-40(2019).
[299] Y. Hu et al. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).
[300] J. Holzgrafe et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica, 7, 1714-1720(2020).
[301] T. P. McKenna et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica, 7, 1737-1745(2020).
[302] Y. Xu et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun., 12, 4453(2021).
[303] A. P. Higginbotham et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys., 14, 1038-1042(2018).
[304] L. E. Myers et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102-2116(1995). https://doi.org/10.1364/JOSAB.12.002102
[305] G. Li et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939-942(2017).
[306] Y. Li et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 9, 3575-3585(2020).
[307] S. Kakio et al. Diffraction properties and beam-propagation analysis of waveguide-type acoustooptic modulator driven by surface acoustic wave. Jpn. J. Appl. Phys., 44, 4472-4476(2005).
[308] M. Kadota et al. High-frequency lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 2564-2571(2010). https://doi.org/10.1109/TUFFC.2010.1722
[309] W. C. Jiang, Q. Lin. Chip-scale cavity optomechanics in lithium niobate. Sci. Rep., 6, 36920(2016).
[310] W. Jiang et al. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).
[311] L. Shao et al. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl., 12, 014022(2019).
[312] A. E. Hassanien et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photonics Res., 9, 1182-1190(2021).
[313] C. J. Sarabalis et al. Acousto-optic modulation of a wavelength-scale waveguide. Optica, 8, 477-483(2021).
[314] R. M. White, F. W. Voltmer. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett., 7, 314-316(1965).
[315] T.-T. Wu et al. Analysis and design of focused interdigital transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52, 1384-1392(2005).
[316] M. S. Kharusi, G. W. Farnell. On diffraction and focusing in anisotropic crystals. Proc. IEEE, 60, 945-956(1972).
[317] Z. Cheng, C. Tsai. Baseband integrated acousto-optic frequency shifter. Appl. Phys. Lett., 60, 12-14(1992).
[318] S. Kakio. Acousto-optic modulator driven by surface acoustic waves. Acta Phys. Pol. A, 127, 15-19(2015).
[319] Z. Yu, X. Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl., 9, 1(2020).
[320] Z. Yu, X. Sun. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photonics, 8, 798-803(2021).
[321] R. Lu et al. S0-mode lithium niobate acoustic delay lines with 1 dB insertion loss. IEEE Int. Ultrason. Symp.(2018).
[322] R. Lu et al. Gigahertz low-loss and wideband S0 mode lithium niobate acoustic delay lines. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 66, 1373-1386(2019).
[323] R. Lu et al. GHz broadband SH0 mode lithium niobate acoustic delay lines. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 402-412(2020).
[324] R. J. Mears et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron. Lett., 23, 1026-1028(1987).
[325] G. P. Agrawal. Fiber-Optic Communication Systems, 222(2010).
[326] E. Lallier et al. Nd:MgO:LiNbO3 waveguide laser and amplifier. Opt. Lett., 15, 682-684(1990). https://doi.org/10.1364/OL.15.000682
[327] E. Lallier et al. Laser oscillation of single-mode channel waveguide in Nd:MgO:LiNbO3. Electron. Lett., 25, 1491-1492(1989). https://doi.org/10.1049/el:19891000
[328] I. Baumann et al. Er-doped integrated optical devices in LiNbO3. IEEE J. Sel. Top. Quantum Electron., 2, 355-366(1996). https://doi.org/10.1109/2944.577395
[329] R. Brikmann, W. Sohler, H. Suche. Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett., 27, 415-417(1991). https://doi.org/10.1049/el:19910263
[330] Q. Luo et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett., 46, 3275-3278(2021).
[331] Y. Liu et al. On-chip erbium-doped lithium niobate microcavity laser. SCIENCE CHINA Phys. Mech. Astron., 64, 234262(2021).
[332] Q. Luo et al. Microdisk lasers on an erbium-doped lithium-niobite chip. SCIENCE CHINA Phys. Mech. Astron., 64, 234263(2021).
[333] Q. Luo et al. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett., 19, 060008(2021).
[334] D. Yin et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127-2130(2021).
[335] C. Op de Beeck et al. III/V-on-lithium niobate amplifiers and lasers. Optica, 8, 1288-1289(2021).
[336] H. Guan et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv. Opt. Mater., 9, 2100245(2021).
[337] S. Liu, D. Long. Pyroelectric detectors and materials. Proc. IEEE, 66, 14-26(1978).
[338] M. Chauvet et al. Fast-beam self-trapping in LiNbO3 films by pyroelectric effect. Opt. Lett., 40, 1258-1261(2015). https://doi.org/10.1364/OL.40.001258
[339] K. K. Gopalan et al. Mid-infrared pyroresistive graphene detector on LiNbO3. Adv. Opt. Mater., 5, 1600723(2017). https://doi.org/10.1002/adom.201600723
[340] B. Gao et al. Lithium niobate metasurfaces. Laser Photonics Rev., 13, 1800312(2019).
[341] A. Fedotova et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608-8614(2020).
[342] L. Carletti et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics, 8, 731-737(2021). https://doi.org/10.1021/acsphotonics.1c00026
[343] J. Ma et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev., 15, 2000521(2021).
[344] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).
[345] I. Staude, T. Pertsch, Y. S. Kivshar. All-dielectric resonant meta-optics lightens up. ACS Photonics, 6, 802-814(2019).
[346] L. Wang et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett., 18, 3978-3984(2018).
[347] J. P. Höpker et al. Integrated superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. J. Phys. Photonics, 3, 034022(2021).
[348] M. Colangelo et al. Superconducting nanowire single-photon detector on thin-film lithium niobate photonic waveguide(2020).
[349] E. Lomonte et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun., 12, 6847(2021).
[350] W. H. P. Pernice et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun., 3, 1325(2012).
[351] C. Herzog, G. Poberaj, P. Günter. Electro-optic behavior of lithium niobate at cryogenic temperatures. Opt. Commun., 281, 793-796(2008).
[352] F. Thiele et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides. Opt. Express, 28, 28961-28968(2020).
[353] G. Chen et al. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt. Express, 23, 25700-25706(2015).
[354] G. Chen et al. Integration of high-speed GaAs metal-semiconductor-metal photodetectors by means of transfer printing for 850 nm wavelength photonic interposers. Opt. Express, 26, 6351-6359(2018).
[355] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).
[356] R. Safian et al. Foundry-compatible thin-film lithium niobate electro-optic modulators. Proc. SPIE, 11283, 112832F(2020).
[357] A. Y. Piggott et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).
[358] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).
[359] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).
[360] X. Chen et al. Single-wavelength and single-photodiode 700 Gb/s entropy-loaded PS-256-QAM and 200-GBaud PS-PAM-16 transmission over 10-km SMF. Eur. Conf. Opt. Commun.(2020).
[361] O. Alibart et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).