• Infrared and Laser Engineering
  • Vol. 50, Issue 6, 20200505 (2021)
Guozhu Hou1、2, Lijun Lv2, and Yiqing Cao3
Author Affiliations
  • 1Industrial Technology Center, Shanghai Dianji University, Shanghai 201306, China
  • 2Department of Precision Mechanical Engineering, Shanghai University, Shanghai 200444, China
  • 3School of Mechanical and Electrical Engineering, Putian University, Putian 351100, China
  • show less
    DOI: 10.3788/IRLA20200505 Cite this Article
    Guozhu Hou, Lijun Lv, Yiqing Cao. Fish-eye lens system design based on sixth-order wave aberration theory[J]. Infrared and Laser Engineering, 2021, 50(6): 20200505 Copy Citation Text show less

    Abstract

    The fish-eye lens system has the characteristics of plane symmetry, large field of view and large aperture imaging. That makes fish-eye lens design very complicated. Wave aberration theory is an important means to study optical system. Because the fish-eye lens system has the imaging characteristics of plane symmetry, Seidel primary aberration and higher-order aberration theory based on axisymmetric optical system are no longer suitable for aberration analysis and design of the fish-eye lens systems. The theory of sixth-order wave aberration was introduced, including the sixth-order intrinsic wave aberrations, the fifth-order aberration, transverse aberrations and the influence of the second-order accuracy of the aperture ray on the wave aberration. The flow chart of fish-eye lens system design based on sixth-order wave aberration theory was given. The former optical group of fish eye lens was designed based on sixth-order wave aberration theory, and the latter optical group design was obtained by balancing the aberrations of former group and latter group. Finally, a fish-eye lens system with good imaging quality was obtained. Its focal length is 5.989 mm, its field of view angle (FOV) is 180°, and its relative aperture is 1/3.2. The design results show that the modulation transfer function (MTF) of the fish-eye lens system is no less than 0.56 when the spatial frequency is 60 lp/mm. This fish-eye lens system has better imaging quality.
    $ \Delta {x}_{01}^{{{'}}}=- {\Delta }{x}_{2}^{*} $ (1)

    View in Article

    $ \Delta {y}_{01}^{{{'}}}= {\Delta }{y}_{2}^{*} $ (2)

    View in Article

    $ \begin{split} \Delta {x}_{01}^{{{'}}}=&-({d}_{200\left(2\right)}^{{{'}}}{x}_{2}^{2}+{d}_{020\left(2\right)}^{{{'}}}{y}_{2}^{2}+{d}_{300\left(2\right)}^{{{'}}}{x}_{2}^{3}+{d}_{120\left(2\right)}^{{{'}}}{{x}_{2}y}_{2}^{2}+\\ & {d}_{400\left(2\right)}^{{{'}}}{x}_{2}^{4}+{d}_{220\left(2\right)}^{{{'}}}{x}_{2}^{2}{y}_{2}^{2}+{d}_{040\left(2\right)}^{{{'}}}{y}_{2}^{4}+{d}_{500\left(2\right)}^{{{'}}}{x}_{2}^{5}+\\ & {d}_{320\left(2\right)}^{{{'}}}{x}_{2}^{3}{y}_{2}^{2}+{d}_{140\left(2\right)}^{{{'}}}{x}_{2}{y}_{2}^{4}) \end{split}$(3)

    View in Article

    $ \begin{split} \Delta {y}_{01}^{{{'}}}=&\left({h}_{110\left(2\right)}^{{{'}}}{x}_{2}{y}_{2}+{h}_{210\left(2\right)}^{{{'}}}{x}_{2}^{2}{y}_{2}+{h}_{030\left(2\right)}^{{{'}}}{y}_{2}^{3}+{h}_{310\left(2\right)}^{{{'}}}{x}_{2}^{3}{y}_{2}+\right.\\ & \left.{h}_{130\left(2\right)}^{{{'}}}{x}_{2}{y}_{2}^{3}+{h}_{410\left(2\right)}^{{{'}}}{x}_{2}^{4}{y}_{2}+{h}_{230\left(2\right)}^{{{'}}}{x}_{2}^{2}{y}_{2}^{3}+{h}_{050\left(2\right)}^{{{'}}}{y}_{2}^{5}\right) \end{split} $(4)

    View in Article

    $ {\Delta x}_{1}=\frac{{\Delta x}_{01}^{{{'}}}}{{\cos}{\beta }_{1}} $(5)

    View in Article

    $ {\Delta y}_{1}={\Delta y}_{01}^{{{'}}} $(6)

    View in Article

    $ \begin{split} &{x_1} = {A_1}{x_2} + {A_1}{\varGamma _{R\left( 1 \right)}}x_2^2 + {A_1}{\varGamma _{\rho \left( 1 \right)}}y_2^2\\ & {y_1} = {B_1}{y_2} + {B_1}{\varGamma _{12\left( 1 \right)}}{x_2}{y_2} \end{split} $ (7)

    View in Article

    $ {\varGamma _{R\left( k \right)}} = {A_k}{c_{2,0\left( k \right)}}\tan {\beta _k} - {c_{2,0\left( {k + 1} \right)}}\tan {\alpha _{k + 1}} + \frac{{\sin \left( {{\alpha _{k + 1}} - {\beta _k}} \right)}}{{{r_{m\left( {k + 1} \right)}}\cos {\beta _k}}} $ (8)

    View in Article

    $ {\varGamma _{\rho \left( k \right)}} = \frac{{B_k^2{c_{0,2\left( k \right)}}\tan {\beta _k}}}{{{A_k}}} - {c_{0,2\left( {k + 1} \right)}}\tan {\alpha _{k + 1}} $ (9)

    View in Article

    $ {\varGamma _{12\left( k \right)}} = \frac{{\sin {\alpha _{k + 1}}}}{{{r_{s\left( {k + 1} \right)}}}} - \frac{{{A_k}\sin {\beta _k}}}{{{{r'}_{s\left( k \right)}}}} $ (10)

    View in Article

    $ {A}_{k}={r}_{m\left(k\right)}^{{'}}\cos{\alpha }_{k+1}/\left({r}_{m\left(k+1\right)}\cos{\beta }_{k}\right) $ (11)

    View in Article

    $ {B}_{k}=-{r}_{s\left(k\right)}^{{'}}/{r}_{s\left(k+1\right)} $(12)

    View in Article

    $\begin{split} {W_1} =& {w_{120\left( 1 \right)}}\left( {{x_1} + \Delta {x_1}} \right){\left( {{y_1} + \Delta {y_1}} \right)^2} + {w_{300\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^3}\; + \\ & {w_{400\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^4} + {w_{220\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^2}{\left( {{y_1} + \Delta {y_1}} \right)^2}\; + \\ & {w_{040\left( 1 \right)}}{\left( {{y_1} + \Delta {y_1}} \right)^4} + {w_{500\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^5} + \\ & {w_{140\left( 1 \right)}}\left( {{x_1} + \Delta {x_1}} \right){\left( {{y_1} + \Delta {y_1}} \right)^4} + \\ & {w_{320\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^3}{\left( {{y_1} + \Delta {y_1}} \right)^2}\; + \\ & {w_{600\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^6} + {w_{240\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^2}{\left( {{y_1} + \Delta {y_1}} \right)^4} + \\ & {w_{420\left( 1 \right)}}{\left( {{x_1} + \Delta {x_1}} \right)^4}{\left( {{y_1} + \Delta {y_1}} \right)^2} + {w_{060\left( 1 \right)}}{\left( {{y_1} + \Delta {y_1}} \right)^6} \end{split} $ (13)

    View in Article

    $ w_{400}^{\left( S \right)} = 3\overline {w_{300}^{\varPsi 1}} $ (14)

    View in Article

    $ w_{220}^{\left( S \right)} = 3\overline {w_{300}^{\varPsi 2}} + \overline {w_{120}^{\varPsi 1}} + 2\overline {w_{120}^{\varPsi 3}} $ (15)

    View in Article

    $ w_{040}^{\left( S \right)} = \overline {w_{120}^{\varPsi 2}} $ (16)

    View in Article

    $ w_{500}^{\left( S \right)} = 4\overline {w_{400}^{\varPsi 1}} $ (17)

    View in Article

    $ w_{140}^{\left( S \right)} = 2\overline {w_{220}^{\varPsi 2}} + 4\overline {w_{040}^{\varPsi 3}} $ (18)

    View in Article

    $ w_{320}^{\left( S \right)} = 2\overline {w_{220}^{\varPsi 1}} + 2\overline {w_{220}^{\varPsi 3}} + 4\overline {w_{400}^{\varPsi 2}} $ (19)

    View in Article

    $ w_{600}^{\left( S \right)} = 5\overline {w_{500}^{\varPsi 1}} $ (20)

    View in Article

    $ w_{240}^{\left( S \right)} = \overline {w_{140}^{\varPsi 1}} + 4\overline {w_{140}^{\varPsi 3}} + 3\overline {w_{320}^{\varPsi 2}} $ (21)

    View in Article

    $ w_{420}^{\left( S \right)} = 5\overline {w_{500}^{\varPsi 2}} + 3\overline {w_{320}^{\varPsi 1}} + 2\overline {w_{320}^{\varPsi 3}} $ (22)

    View in Article

    $ w_{060}^{\left( S \right)} = \overline {w_{140}^{\varPsi 2}} $ (23)

    View in Article

    $ \overline {w_{ij0}^{\varPsi n}} = \sum\limits_{l = 1}^{g - 1} {A_{l|g}^i} B_{l|g}^j{\varPsi _{n\left( l \right)}}{w_{ij0\left( l \right)}}\;\;\left( {n = 1{,}\;2{,}\;3} \right) $ (24)

    View in Article

    $ {\varPsi _{1\left( i \right)}} = \sum\limits_{l = i}^{g - 1} {{A_{l + 1|g}}{\varGamma _{R\left( l \right)}}} $ (25)

    View in Article

    $ {\varPsi _{2\left( i \right)}} = \sum\limits_{l = i}^{g - 1} {\frac{{B_{l + 1|g}^2}}{{{A_{l + 1|g}}}}} {\varGamma _{\rho \left( l \right)}} $ (26)

    View in Article

    $ {\varPsi _{3\left( i \right)}} = \sum\limits_{l = i}^{g - 1} {{A_{l + 1|g}}} {\varGamma _{12\left( l \right)}} $ (27)

    View in Article

    $ {A_{k|g}} = \frac{{{x_k}}}{{{x_g}}} = \frac{{{{r'}_{m\left( k \right)}}{{r'}_{m\left( {k + 1} \right)}} \cdots {{r'}_{m\left( {g - 1} \right)}}\cos {\alpha _{k + 1}}\cos {\alpha _{k + 2}} \cdots \cos {\alpha _g}}}{{{r_{m\left( {k + 1} \right)}}{r_{m\left( {k + 2} \right)}} \cdots {r_{m\left( g \right)}}\cos {\beta _k}\cos {\beta _{k + 1}} \cdots \cos {\beta _{g - 1}}}} $ (28)

    View in Article

    $ {B_{k|g}} = \frac{{{y_k}}}{{{y_g}}} = {\left( { - 1} \right)^{g - k}} \cdot \frac{{{{r'}_{s\left( k \right)}}{{r'}_{s\left( {k + 1} \right)}} \cdots {{r'}_{s\left( {g - 1} \right)}}}}{{{r_{s\left( {k + 1} \right)}}{r_{s\left( {k + 2} \right)}} \cdots {r_{s\left( g \right)}}}} $ (29)

    View in Article

    $ {w_{ij0\left( T \right)}}{\rm{ = }}{\bar w_{ij0}} + w_{ij0}^{\left( E \right)} + w_{ij0}^{\left( S \right)} $ (30)

    View in Article

    Guozhu Hou, Lijun Lv, Yiqing Cao. Fish-eye lens system design based on sixth-order wave aberration theory[J]. Infrared and Laser Engineering, 2021, 50(6): 20200505
    Download Citation