• Laser & Optoelectronics Progress
  • Vol. 58, Issue 4, 0411002 (2021)
Jiaqi Liu1, Zhijie Zhang1、*, Zhenyu Lin1, and Wuliang Yin1、2
Author Affiliations
  • 1Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, North University of China, Taiyuan,Shanxi 0 38507, China;
  • 2School of Electrical and Electronic Engineering, University of Manchester, Manchester M139PL, UK
  • show less
    DOI: 10.3788/LOP202158.0411002 Cite this Article Set citation alerts
    Jiaqi Liu, Zhijie Zhang, Zhenyu Lin, Wuliang Yin. Depth Detection of Material Surface Defects Based on Laser Thermography[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0411002 Copy Citation Text show less
    References

    [1] Liu X F, Tian Y X, Zou J et al. The influence of impact or scratch flaw on the fatigue performance of TB6 used in helicopter[J]. Science Technology and Engineering, 19, 349-355(2019).

    [2] Shen X H, Li Z H, Li M et al. Aluminum surface-defect detection based on multi-task deep learning[J]. Laser & Optoelectronics Progress, 57, 101501(2020).

    [3] Sreeshan K, Dinesh R, Renji K. Enhancement of thermographic images of composite laminates for debond detection: an approach based on Gabor filter and watershed[J]. NDT & E International, 103, 68-76(2019). http://www.sciencedirect.com/science/article/pii/S0963869518305231

    [4] Spytek J, Ziaja-Sujdak A, Dziedziech K et al. Evaluation of disbonds at various interfaces of adhesively bonded aluminum plates using all-optical excitation and detection of zero-group velocity lamb waves[J]. NDT & E International, 112, 102249(2020). http://www.researchgate.net/publication/339818877_Evaluation_of_disbonds_at_various_interfaces_of_adhesively_bonded_aluminum_plates_using_all-optical_excitation_and_detection_of_zero-group_velocity_Lamb_waves

    [5] Dong N C, Zhang Z J, Yin W L et al. Detection of steel surface cracks based on pulsed laser point source thermal imaging method[J]. Laser & Infrared, 49, 1195-1200(2019).

    [6] Yang R Z, He Y Z, Zhang H. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade[J]. Renewable and Sustainable Energy Reviews, 60, 1225-1250(2016). http://smartsearch.nstl.gov.cn/paper_detail.html?id=181074b7215a81157cd168b78cee17df

    [7] Jiang H J, Chen L. Application of flash thermal excitation infrared thermographic nondestructive testing equipment[J]. Nondestructive Testing, 39, 57-60, 64(2017).

    [8] Li Y J, Li K, Zhong A B et al. Simulation research of infrared image detection technology for halogen lamp heating[J]. Laser & Infrared, 46, 1477-1480(2016).

    [9] Duchesne S, Morganti F, Shulz C et al. Measurement of the leakage flux in the vicinity of a transformer core: application to detection and localization of faults[J]. COMPEL International Journal of Computations and Mathematics in Electrical(2020). http://www.researchgate.net/publication/340234533_Measurement_of_the_leakage_flux_in_the_vicinity_of_a_transformer_core_Application_to_detection_and_localization_of_faults

    [10] Xu Y, Wang Q Y, Luo C C et al. Chip crack imaging detection based on line laser phase-locked thermal imaging[J]. Laser & Optoelectronics Progress, 57, 061018(2020).

    [11] Yang L J, Li Y, Sun J J et al. Reflection and transmission of laser ultrasonic waves on surface defects[J]. Laser & Optoelectronics Progress, 56, 041203(2019).

    [12] Vavilov V P. Modeling thermal NDT problems[J]. International Journal of Heat and Mass Transfer, 72, 75-86(2014).

    [13] Jie J, Dai S Q, Hou B P et al. Defect detection in composite products based on sparse moving window principal component thermography[J]. Advances in Polymer Technology, 2020, 1-12(2020). http://www.researchgate.net/publication/339114155_Defect_Detection_in_Composite_Products_Based_on_Sparse_Moving_Window_Principal_Component_Thermography

    [14] He Z Y, Wang H J, He Y Z et al. Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer[J]. IEEE Sensors Journal, 20, 328-336(2020).

    [15] Dong N C, Zhang Z J, Yin W L et al. Characterization of surface defects in austenitic steel based on laser thermal imaging[J]. Laser & Infrared, 50, 179-183(2020).

    [16] Song J R, Gao B, Woo W L et al. Ensemble tensor decomposition for infrared thermography cracks detection system[J]. Infrared Physics & Technology, 105, 103203(2020). http://www.sciencedirect.com/science/article/pii/S1350449519308618

    [17] Atwya M, Panoutsos G. Transient thermography for flaw detection in friction stir welding: a machine learning approach[J]. IEEE Transactions on Industrial Informatics, 16, 4423-4435(2020). http://ieeexplore.ieee.org/document/8873595/

    [18] Wang Z, Zhang Y W, Yu Y et al. Depth test of pipeline defects by active thermal excitation and infrared thermography[J]. Acta Optica Sinica, 38, 0912003(2018).

    [19] Yu P, Zeng Y. Characterization of laser-induced local heating in a substrate[J]. International Journal of Heat & Mass Transfer, 106, 989-996(2017).

    [20] Zhen J P, Guo Q, Zhou J. Simulation of heat transfer in multi-layered medium[J]. Applied Physics, 9, 7-12(2019). http://www.researchgate.net/publication/330317593_Simulation_of_Heat_Transfer_in_Multi-Layered_Medium

    [21] Zhang J. Research on infrared thermal imaging temperature measurement technology and its application[D]. Chengdu: University of Electronic Science and Technology of China(2011).

    Jiaqi Liu, Zhijie Zhang, Zhenyu Lin, Wuliang Yin. Depth Detection of Material Surface Defects Based on Laser Thermography[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0411002
    Download Citation