• Acta Physica Sinica
  • Vol. 69, Issue 3, 030601-1 (2020)
Zheng-Qiong Dong1, Hang Zhao1, Jin-Long Zhu2, and Ya-Ting Shi2、*
Author Affiliations
  • 1Hubei Key Laboratory of Manufacture Quality Engineering, Hubei University of Technology, Wuhan 430068, China
  • 2State Key Laboratory for Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.7498/aps.69.20191525 Cite this Article
    Zheng-Qiong Dong, Hang Zhao, Jin-Long Zhu, Ya-Ting Shi. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure[J]. Acta Physica Sinica, 2020, 69(3): 030601-1 Copy Citation Text show less
    (a) Geometry of the trapezoidal groove line grating; (b) layers division for inverse modeling based on RCWA.(a) 线条光栅结构的几何形貌示意图; (b) RCWA建模的分层示意图
    Fig. 1. (a) Geometry of the trapezoidal groove line grating; (b) layers division for inverse modeling based on RCWA.(a) 线条光栅结构的几何形貌示意图; (b) RCWA建模的分层示意图
    Principle and instrument of the dual rotating-compensator Mueller matrix ellipsometer: (a) Principle; (b) instrument.双旋转补偿器型Mueller矩阵椭偏仪 (a)基本光路; (b)仪器
    Fig. 2. Principle and instrument of the dual rotating-compensator Mueller matrix ellipsometer: (a) Principle; (b) instrument.双旋转补偿器型Mueller矩阵椭偏仪 (a)基本光路; (b)仪器
    (a) The SiO2 sample; (b) the PMMA sample spinning coated on the surface of the SiO2 film.(a) SiO2薄膜样品; (b) 在SiO2表面旋涂PMMA光刻胶后的薄膜样品
    Fig. 3. (a) The SiO2 sample; (b) the PMMA sample spinning coated on the surface of the SiO2 film. (a) SiO2薄膜样品; (b) 在SiO2表面旋涂PMMA光刻胶后的薄膜样品
    Extracted results of the thicknesses of SiO2 film h1 and equivalent surface roughness r1: (a) r1; (b) d1; (c) MSE.拟合得到的20组SiO2膜厚d1及其表面粗糙度等效膜厚r1 (a) r1; (b) d1; (c) MSE
    Fig. 4. Extracted results of the thicknesses of SiO2 film h1 and equivalent surface roughness r1: (a) r1; (b) d1; (c) MSE. 拟合得到的20组SiO2膜厚d1及其表面粗糙度等效膜厚r1  (a) r1; (b) d1; (c) MSE
    Extracted results of the optical constants n1 and k1 of SiO2 film calculated by Cauchy model and the ones from Ref. [34]: (a) n1; (b) k1.拟合得到的第1, 5, 10, 15和20组SiO2薄膜光学常数n1和k1的计算值, 以及文献[34]给出的折射率与消光系数 (a) n1; (b) k1
    Fig. 5. Extracted results of the optical constants n1 and k1 of SiO2 film calculated by Cauchy model and the ones from Ref. [34]: (a) n1; (b) k1. 拟合得到的第1, 5, 10, 15和20组SiO2薄膜光学常数n1k1的计算值, 以及文献[34]给出的折射率与消光系数 (a) n1; (b) k1
    Extracted results of the thicknesses of PMMA film d2 and equivalent surface roughness r2: (a) r2; (b) d2; (c) MSE.拟合得到的20组PMMA膜厚d2及其表面粗糙度等效膜厚r2 (a) r2; (b) d2; (c) MSE
    Fig. 6. Extracted results of the thicknesses of PMMA film d2 and equivalent surface roughness r2: (a) r2; (b) d2; (c) MSE. 拟合得到的20组PMMA膜厚d2及其表面粗糙度等效膜厚r2  (a) r2; (b) d2; (c) MSE
    Extracted results of the optical constants n2 and k2 of PMMA film calculated by Cauchy model: (a) n2; (b) k2拟合得到的第1, 5, 10, 15和20组PMMA薄膜光学常数n2和k2的计算值 (a) n2; (b) k2
    Fig. 7. Extracted results of the optical constants n2 and k2 of PMMA film calculated by Cauchy model: (a) n2; (b) k2拟合得到的第1, 5, 10, 15和20组PMMA薄膜光学常数n2k2的计算值 (a) n2; (b) k2
    Geometry of the simulated PMMA grating samplePMMA光刻胶仿真光栅的结构示意图
    Fig. 8. Geometry of the simulated PMMA grating samplePMMA光刻胶仿真光栅的结构示意图
    Fitting results of the calculated and the “ellipsometer-measured” Mueller matrix elements at the incidence and azimuthal angles fixed at θ = 65° and φ = 0°.在入射角θ = 65°、方位角φ = 0°的入射条件下, PMMA光刻胶仿真光栅的模型计算Mueller矩阵光谱与“测量”光谱之间的拟合曲线
    Fig. 9. Fitting results of the calculated and the “ellipsometer-measured” Mueller matrix elements at the incidence and azimuthal angles fixed at θ = 65° and φ = 0°. 在入射角θ = 65°、方位角φ = 0°的入射条件下, PMMA光刻胶仿真光栅的模型计算Mueller矩阵光谱与“测量”光谱之间的拟合曲线
    参数名称真实值拟合值绝对误差
    顶部线宽w1/nm 350.00352.902.90
    线高h/nm 387.42387.900.50
    底部线宽w2/nm 365.00368.500.35
    Table 1. Comparison of these three true dimensions and the extracted results of the simulated PMMA grating.
    Zheng-Qiong Dong, Hang Zhao, Jin-Long Zhu, Ya-Ting Shi. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure[J]. Acta Physica Sinica, 2020, 69(3): 030601-1
    Download Citation