• Advanced Photonics
  • Vol. 1, Issue 5, 056002 (2019)
Zoé-Lise Deck-Léger1、*, Nima Chamanara1, Maksim Skorobogatiy2, Mário G. Silveirinha3, and Christophe Caloz1
Author Affiliations
  • 1Polytechnique Montréal, Department of Electrical Engineering, Montréal, Quebec, Canada
  • 2Polytechnique Montréal, Department of Engineering Physics, Montréal, Quebec, Canada
  • 3Universidade de Lisboa - Instituto Superior Técnico and Instituto de Telecomunicações, Department of Electrical Engineering, Lisbon, Portugal
  • show less
    DOI: 10.1117/1.AP.1.5.056002 Cite this Article Set citation alerts
    Zoé-Lise Deck-Léger, Nima Chamanara, Maksim Skorobogatiy, Mário G. Silveirinha, Christophe Caloz. Uniform-velocity spacetime crystals[J]. Advanced Photonics, 2019, 1(5): 056002 Copy Citation Text show less
    References

    [1] N. Ashcroft, N. Mermin. Introduction to Solid State Physics(1976).

    [2] J. D. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light(2011).

    [3] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics(2007).

    [4] W. H. Bragg, W. L. Bragg. The reflection of x-rays by crystals. Proc. R. Soc. Lond. A., 88, 428-438(1913).

    [5] D. Holberg, K. Kunz. Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag., 14, 183-194(1966).

    [6] R. Fante. Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag., 19, 417-424(1971).

    [7] A. Kamal. A parametric device as a nonreciprocal element. Proc. IRE, 48, 1424-1430(1960).

    [8] L. Baldwin. Nonreciprocal parametric amplifier circuits. Proc. IRE, 49, 1075-1101(1961).

    [9] J. R. Zurita-Sánchez, P. Halevi, J. C. Cervantes-González. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ε(t). Phys. Rev. A, 79, 053821(2009). https://doi.org/10.1103/PhysRevA.79.053821

    [10] J. Vila et al. A Bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties. J. Sound Vibr., 406, 363-377(2017).

    [11] T. Koutserimpas, R. Fleury. Electromagnetic waves in a time periodic medium with step-varying refractive index. IEEE Trans. Antennas. Propag., 66, 5300-5307(2018).

    [12] E. Lustig, Y. Sharabi, M. Segev. Topological aspects of photonic time crystals. Optica, 5, 1390-1395(2018).

    [13] K. Giergiel et al. Topological time crystals. New J. Phys., 21, 052003(2019).

    [14] D. K. Kalluri. Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer(2010).

    [15] A. Shlivinski, Y. Hadad. Beyond the Bode–Fano bound: wideband impedance matching for short pulses using temporal switching of transmission-line parameters. Phys. Rev. Lett., 121, 204301(2018).

    [16] M. Mirmoosa et al. Time-varying reactive elements for extreme accumulation of electromagnetic energy. Phys. Rev. Appl., 11, 014024(2019).

    [17] A. Shapere, F. Wilczek. Classical time crystals. Phys. Rev. Lett., 109, 160402(2012).

    [18] M. Skorobogatiy, J. D. Joannopoulos. Rigid vibrations of a photonic crystal and induced interband transitions. Phys. Rev. B, 61, 5293-5302(2000).

    [19] M. Skorobogatiy, J. D. Joannopoulos. Photon modes in photonic crystals undergoing rigid vibrations and rotations. Phys. Rev. B, 61, 15554-15557(2000).

    [20] H. Qu et al. Frequency generation in moving photonic crystals. J. Opt. Soc. Am. B, 33, 1616-1626(2016).

    [21] D.-W. Wang et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).

    [22] C. Doppler. Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels(1842).

    [23] J. Ramasastry. Wave interaction with moving boundaries. Electron. Lett., 3, 479-481(1967).

    [24] C. Tsai, B. Auld. Wave interactions with moving boundaries. J. Appl. Phys., 38, 2106-2115(1967).

    [25] J. Bradley. IV. A letter from the Reverend Mr. James Bradley Savilian Professor of Astronomy at Oxford, and FRS to Dr. Edmond Halley Astronom. Reg. &c. giving an account of a new discovered motion of the fix’d stars. Philos. Trans. R. Soc., 35, 637-661(1729).

    [26] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, 1-10(2019).

    [27] C. Caloz, Z.-L. Deck-Léger. Spacetime metamaterials. IEEE Trans. Antennas Propag.(2019).

    [28] K. Lurie, S. Weekes. Wave propagation and energy exchange in a spatio-temporal material composite with rectangular microstructure. J. Math. Anal. Appl., 314, 286-310(2006).

    [29] K. Lurie, D. Onofrei, S. Weekes. Mathematical analysis of the waves propagation through a rectangular material structure in space–time. J. Math. Anal. Appl., 355, 180-194(2009).

    [30] G. Milton, O. Mattei. Field patterns: a new mathematical object. Proc. R. Soc. A, 473, 20160819(2017).

    [31] O. Mattei, G. Milton. Field patterns without blow up. New J. Phys., 19, 093022(2017).

    [32] O. Mattei, G. Milton. Field patterns: a new type of wave with infinitely degenerate band structure. EPL, 120, 54003(2018).

    [33] P. K. Tien. Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys., 29, 1347-1357(1958).

    [34] J. R. Pierce. Use of the principles of conservation of energy and momentum in connection with the operation of wave-type parametric amplifiers. J. Appl. Phys., 30, 1341-1346(1959).

    [35] A. Cullen. A travelling-wave parametric amplifier. Nature, 181, 332-332(1958).

    [36] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91-94(2009).

    [37] A. Bahabad, M. M. Murnane, H. C. Kapteyn. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photonics, 4, 570-575(2010).

    [38] S. Taravati, N. Chamanara, C. Caloz. Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Phys. Rev. B, 65, 442-452(2017).

    [39] N. Chamanara et al. Optical isolation based on space-time engineered asymmetric photonic band gaps. Phys. Rev. B, 96, 155409(2017).

    [40] C. Caloz et al. Electromagnetic nonreciprocity. Phys. Rev. Appl., 10, 047001(2018).

    [41] C. Caloz, A. Alù. Guest editorial special cluster on magnetless nonreciprocity in electromagnetics. IEEE Antennas Wirel. Propag. Lett., 17, 1931-1937(2018).

    [42] E. S. Cassedy, A. A. Oliner. Dispersion relations in time-space periodic media: part I—stable interactions. Proc. IEEE, 51, 1342-1359(1963).

    [43] E. S. Cassedy. Dispersion relations in time-space periodic media: part II—unstable interactions. Proc. IEEE, 55, 1154-1168(1967).

    [44] F. Biancalana et al. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E, 75, 046607(2007).

    [45] L. Felsen, G. M. Whitman. Wave propagation in time-varying media. IEEE Trans. Antennas Propag., 18, 242-253(1970).

    [46] A. B. Shvartsburg. Optics of nonstationary media. Phys.-Usp., 48, 797-823(2005).

    [47] J. D. Jackson. Classical Electrodynamics(1999).

    [48] L. A. Ostrovskii. Some ‘moving boundary paradoxes’ in electrodynamics. Sov. Phys. Usp., 18, 452-458(1975).

    [49] L.-Q. Shui et al. One-dimensional linear elastic waves at moving property interface. Wave Motion, 51, 1179-1192(2014).

    [50] Z.-L. Deck-Léger, C. Caloz. Scattering at interluminal interface, 165-166(2018).

    [51] H. Lorentz. Electromagnetic phenomena in a system moving with any velocity smaller than that of light, 172-197(1937).

    [52] W. Pauli. Theory of Relativity(1981).

    [53] A. Einstein. Zur elektrodynamik bewegter Körper. Ann. Phys., 322, 891-921(1905).

    [54] H. A. Lorentz et al. The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity(1952).

    [55] M. Laue. Die Mitführung des Lichtes durch bewegte Köper nach dem Relativitäts-prinzip. Ann. Phys., 328, 989-990(1907).

    [56] H. Fizeau. Sur les hypothèses relatives à l’éther lumineux, et sur une expérience qui parait démontrer que le mouvement des corps change la vitesse avec laquelle la lumière se propage dans leur intérieur. C.R. Acad. Sci., 33, 349(1851).

    [57] J. A. Kong. Electromagnetic Wave Theory(2008).

    [58] Z.-L. Deck-Léger, A. Akbarzadeh, C. Caloz. Wave deflection and shifted refocusing in a medium modulated by a superluminal rectangular pulse. Phys. Rev. B, 97, 104305(2018).

    [59] F. R. Morgenthaler. Velocity modulation of electromagnetic waves. IEEE Trans. Microwave Theory Tech., 6, 167-172(1958).

    [60] G. Stokes. Mathematical and Physical Papers, 2, 89-103(2009).

    [61] V. Bacot et al. Time reversal and holography with spacetime transformations. Nat. Phys., 12, 972-977(2016).

    [62] M. Born, E. Wolf. Principles of Optics(1980).

    [63] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 90, 077405(2003).

    [64] S. Seshadri. Asymptotic theory of mode coupling in a space-time periodic medium-Part I: stable interactions. Proc. IEEE, 65, 996-1004(1977).

    [65] S. Elnaggar, G. Milford. Controlling nonreciprocity using enhanced Brillouin scattering. IEEE Trans. Antennas Propag., 66, 3500-3511(2018).

    [66] S. Seshadri. Asymptotic theory of mode coupling in a space-time periodic medium—part II: unstable interactions. Proc. IEEE, 65, 1459-1469(1977).

    [67] F. Abelès. La théorie générale des couches minces. J. Phys. Radium, 11, 307-309(1950).

    [68] S. Longhi. PT-symmetric laser absorber. Phys. Rev. A, 82, 031801(2010). https://doi.org/10.1103/PhysRevA.82.031801

    CLP Journals

    [1] Olivier J. F. Martin. When light explores space and time[J]. Advanced Photonics, 2019, 1(5): 050501

    [2] Emanuele Galiffi, Romain Tirole, Shixiong Yin, Huanan Li, Stefano Vezzoli, Paloma A. Huidobro, Mário G. Silveirinha, Riccardo Sapienza, Andrea Alù, J. B. Pendry. Photonics of time-varying media[J]. Advanced Photonics, 2022, 4(1): 014002

    Zoé-Lise Deck-Léger, Nima Chamanara, Maksim Skorobogatiy, Mário G. Silveirinha, Christophe Caloz. Uniform-velocity spacetime crystals[J]. Advanced Photonics, 2019, 1(5): 056002
    Download Citation