• Photonics Research
  • Vol. 12, Issue 3, 522 (2024)
Zijian Liu1、†, Yuying Xi1、†, Wenbo Zeng1, Ting Ji1、3、*, Wenyan Wang1, Sitong Guo1, Linlin Shi1, Rong Wen1, Yanxia Cui1、2、4、*, and Guohui Li1、2、5、*
Author Affiliations
  • 1College of Physics, College of Electronic Information and Optical Engineering, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
  • 3e-mail: jiting@tyut.edu.cn
  • 4e-mail: yanxiacui@tyut.edu.cn
  • 5e-mail: liguohui@tyut.edu.cn
  • show less
    DOI: 10.1364/PRJ.502892 Cite this Article Set citation alerts
    Zijian Liu, Yuying Xi, Wenbo Zeng, Ting Ji, Wenyan Wang, Sitong Guo, Linlin Shi, Rong Wen, Yanxia Cui, Guohui Li. Lead-free perovskite Cs2AgBiBr6 photodetector detecting NIR light driven by titanium nitride plasmonic hot holes[J]. Photonics Research, 2024, 12(3): 522 Copy Citation Text show less
    References

    [1] C. Liu, J. Guo, L. Yu. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl., 10, 123(2021).

    [2] L. Shi, Y. Zhu, G. Li. Atomic-level chemical reaction promoting external quantum efficiency of organic photomultiplication photodetector exceeding 108% for weak-light detection. Sci. Bull., 68, 928-937(2023).

    [3] D. Zhang, Y. Li, J. W. Park. Flexible computational photodetectors for self-powered activity sensing. NPJ Flexible Electron., 6, 7(2022).

    [4] Y. Zheng, Y. Chen, X. Zhu. Research progress of near-infrared organic photovoltaic photodetectors. Acta Polym. Sin., 53, 354-373(2022).

    [5] G. Li, H. Pi, Y. Wei. Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability. Photon. Res., 10, 1440-1452(2022).

    [6] G. Li, Z. Hou, Y. Wei. Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate. Sci. China Mater., 66, 2400-2407(2023).

    [7] B. R. Sutherland, E. H. Sargent. Transfer printing of perovskite whispering gallery mode laser cavities by thermal release tape. Nanoscale Res. Lett., 17, 1-7(2022).

    [8] J. Zhao, X. Wang, Y. Xu. Electrically modulated near-infrared/visible light dual-mode perovskite photodetectors. ACS Appl. Mater. Interfaces, 14, 25824-25833(2019).

    [9] T. Ji, H. Zhang, J. Guo. Highly sensitive self-powered two-dimensional perovskite photodiodes with dual interfaceinterfacials. Adv. Funct. Mater., 33, 2210548(2022).

    [10] L. Zi, W. Xu, R. Sun. Lanthanide-doped MAPbI3 single crystals: fabrication, optical and electrical properties, and multi-mode photodetection. Chem. Mater., 34, 7412-7423(2022).

    [11] Z. Liu, L. Tao, Y. Zhang. Narrowband near-infrared photodetector enabled by dual functional internal-filter-induced selective charge collection. Adv. Opt. Mater., 9, 2100288(2021).

    [12] L. Lei, Z. Shi, Y. Li. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C, 6, 7982-7988(2018).

    [13] J. Yang, C. Bao, W. Ning. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite film. Adv. Opt. Mater., 7, 1801732(2019).

    [14] F. Fang, Y. Wan, H. Li. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano, 16, 3985-3993(2022).

    [15] Z. Weng, J. Qin, A. A. Umar. Lead-free Cs2BiAgBr6 double perovskite-based humidity sensor with superfast recovery time. Adv. Funct. Mater., 29, 1902234(2019).

    [16] M. Delor, A. H. Slavney, N. R. Wolf. Carrier diffusion lengths exceeding 1 μm despite trap-limited transport in halide double perovskites. ACS Energy Lett., 5, 1337-1345(2020).

    [17] K. Du, W. Meng, X. Wang. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew. Chem. Int. Ed., 56, 8158-8162(2017).

    [18] F. Ji, Y. Huang, F. Wang. Near-infrared light-responsive Cu-doped Cs2AgBiBr6. Adv. Funct. Mater., 30, 2005521(2020).

    [19] Z. Sun, L. Aigouy, Z. Chen. Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale., 8, 7377-7383(2016).

    [20] Y. H. Lee, S. Park, Y. Won. Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites. NPG Asia Mater., 12, 79(2022).

    [21] T. Wang, D. Zheng, J. Zhang. High-performance and stable plasmonic-functionalized formamidinium-based quasi-2D perovskite photodetector for potential application in optical communication. Adv. Funct. Mater., 32, 2208694(2022).

    [22] H. Kim, R. M. Kim, S. D. Namgung. Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles. Adv. Sci., 9, 2104598(2022).

    [23] Y. Xi, X. Wang, T. Ji. Plasmonic resonance enabling 2D perovskite single crystal to detect telecommunication light. Adv. Opt. Mater., 11, 2202423(2023).

    [24] C. Zhang, Y. Luo, S. A. Maier. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photon. Rev., 16, 2100714(2022).

    [25] A. A. Hussain, B. Sharma, T. Barman. Self-powered broadband photodetector using plasmonic titanium nitride. ACS Appl. Mater. Interfaces, 8, 4258-4265(2016).

    [26] A. Naldoni, U. Guler, Z. Wang. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater., 5, 1601031(2017).

    [27] J. Xu, X. Yu, X. Liu. Effect of Ag nanoparticles on performance of CH3NH3PbI3 perovskite photodetectors. J. Alloys Compd., 861, 158608(2021).

    [28] Y. Dong, Y. Gu, Y. Zou. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 12, 5622-5632(2016).

    [29] B. Wang, Y. Zou, H. Lu. Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays. Small, 16, 2001417(2020).

    [30] G. Yan, B. Jiang, Y. Xiao. Alkali metal ions induced high-quality all-inorganic Cs2AgBiBr6 perovskite films for flexible self-powered photodetectors. Appl. Surf. Sci., 579, 152198(2022).

    [31] G. Liu, Z. Zhang, C. Wu. Extending absorption of Cs2AgBiBr6 to near-infrared region (≈1350 nm) with intermediate band. Adv. Funct. Mater., 32, 2109891(2021).

    [32] B. Yang, T. Bai, J. Chen. Tuning self-trapped exciton states via trivalent-metal alloying in lead-free 2D double-perovskites. Laser Photon. Rev., 16, 2100475(2022).

    [33] R. Li, L. Cai, Y. Zou. High-efficiency perovskite light-emitting diodes with improved interfacial contact. ACS Appl. Mater. Interfaces, 12, 36681-36687(2020).

    [34] L. Lei, Z. Shi, Y. Li. High-efficiency and air-sable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin film. J. Mater. Chem. C, 6, 7982-7988(2018).

    [35] G. Li, T. Che, X. Ji. Tuning on/off current ratio and field-effect mobility in a MoS2/graphene heterostructure via Schottky barrier modulation. ACS Nano, 8, 5790-5798(2014).

    Zijian Liu, Yuying Xi, Wenbo Zeng, Ting Ji, Wenyan Wang, Sitong Guo, Linlin Shi, Rong Wen, Yanxia Cui, Guohui Li. Lead-free perovskite Cs2AgBiBr6 photodetector detecting NIR light driven by titanium nitride plasmonic hot holes[J]. Photonics Research, 2024, 12(3): 522
    Download Citation