• Journal of Inorganic Materials
  • Vol. 34, Issue 6, 590 (2019)
Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, and Min GUO
Author Affiliations
  • School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    DOI: 10.15541/jim20180406 Cite this Article
    Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure[J]. Journal of Inorganic Materials, 2019, 34(6): 590 Copy Citation Text show less
    References

    [1] Y XIAO, J WU, G YUE et al. Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye- sensitized solar cells. Electrochim. Acta, 58, 621-627(2011).

    [2] Y XIAO, J WU, G YUE et al. The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells.. Power Sources, 208, 197-202(2012).

    [3] Y WANG, H YANG, Y LIU. The use of Ti meshes with self- organized TiO2 nanotubes as photoanodes of all-Ti dye-sensitized solar cells. Prog. Photovolt:Res Appl, 18, 285-290(2010).

    [4] X HUANG, S HAN, W HUANG et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev, 42, 173-201(2013).

    [5] J WU, J WANG, J LIN et al. Enhancement of the photovoltaic performance of dye-sensitized solar cells by doping Y0.78Yb0.20Er0.02F3 in the photoanode. Adv. Energy Mater, 2, 78-81(2012).

    [6] H HUANG S. Effects of Eu 3+ and Er 3+ doping on photoelectrical performance of dye-sensitized solar cells.. Am. Ceram. Soc, 96, 3108-3113(2013).

    [7] M HAASE, H SCHAFER. Upconverting nanoparticles. Angew. Chem. Int. Ed, 50, 5808-5829(2011).

    [8] Y LIU, L YU, G WEI Z et al. Theoretical and experimental study on the effect of rare earth metal doping on the photocatalytic activity of anatase TiO2. Chem. J. Chinese U, 34, 434-440(2013).

    [9] S LIN, X DONG, R JIA et al. Controllable synthesis and luminescence property of LnPO4,( Ln=La, Gd, Y) nanocrystals. J. Mate. Sci. Mater. El, 21, 38-44(2010).

    [10] A HEWES R, F SARVER J. Infrared excitation processes for the visible luminescence of Er 3+, Ho 3+ and Tm 3+ in Yb 3+-sensitized rare-earth trifluorides. Phys. Rev, 182, 427-436(1969).

    [11] F SUYVER J, J GRIMM, W KRÄMER K et al. Highly efficient near-infrared to visible up-conversion process in NaYF4:Er 3+, Yb 3+.. Lumin, 114, 53-59(2005).

    [12] F WANG, X LIU. Recent advances in the chemistry of lanthanide- doped upconversion nanocrystals. Chem. Soc. Rev, 38, 976-989(2009).

    [13] W KIM C, J SHIN W, J CHOI M et al. Wavelength conversion effect-assisted dye sensitized solar cells for enhanced solar light harvesting. J. Mater. Chem.A, 4, 11908-11915(2016).

    [14] W LIU, H ZHANG, H WANG et al. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er 3+-Yb 3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells. Appl. Surf. Sci, 422, 304-315(2017).

    [15] B SHAN G, P DEMOPOULOUS G. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater, 22, 4373-4377(2010).

    [16] X XU, C KUN, D HUANG et al. Disulfide/thiolate based redox shuttle for dye-sensitized solar cells: an impedance spectroscopy study.. J. Phys. Chem.C, 116, 25233-2524(2012).

    [17] L LIANG, Y LIU, C BU et al. Highly uniform bifunctional core/double-shell-structured β-NaYF4: Er 3+, Yb 3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater, 25, 2174-2180(2013).

    [18] C CHOI S, S LEE H, O SANG J et al. Light scattering TiO2 particles surface-modified by Al2O3 coating in a dye-sensitized solar cell. Physica Scripta, 85, 25801-25805(2012).

    [19] S LEE, Y KIM J, S HONG K et al. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol. Energ. Mat. Sol. C, 90, 2405-2412(2006).

    [20] J BANDARA, C WEERASINGHE H. Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high- band-gap oxide layers. Sol.Energ. Mater.Sol.C, 88, 341-350(2005).

    [21] F LENZMANN, J KRUEGER, S BURNSIDE et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states. J.Phys.Chem.B, 105, 6347-6352(2001).

    [22] J GUO, C SHE, T LIAN. Effect of insulating oxide over layers on electron injection dynamics in dye-sensitized nanocrystalline thin films. J. Phys. Chem.C, 111, 8979-8987(2007).

    [23] W YIN L, R TANG. Enhanced photovoltaic performance of dye- sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures. J. Mater. Chem.A, 3, 17417-17425(2015).

    [24] S WU, X GAO, M QIN et al. SrTiO3 modified TiO2 electrodes and improved dye-sensitized TiO2 solar cells. Appl. Phys. Lett., 99(2011).

    [25] E BAREA, Q XU X, V GONZALEZ-PEDRO et al. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorods based dye sensitized solar cells. Energ. Environ. Sci, 4, 3414-3419(2011).

    [26] N KIM H, H MOON J. Enhanced photovoltaic properties of Nb2O5-coated TiO2 3D ordered porous electrodes in dye-sensitized solar cells. ACS Appl. Mater. Inter, 4, 5821-5825(2012).

    [27] R KATOH, A FURUBE. Electron injection efficiency in dye- sensitized solar cells. J. Photoch. Photobio.C, 20, 1-16(2014).

    [28] Y PARK S, S HAN Y. Efficient dye-sensitized solar cells with surface-modified photoelectrodes. Sol.Energy, 110, 260-267(2014).

    [29] J NISSFOLK, K FREDIN, A HAGFELDT et al. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions. J. Phys. Chem.B, 110, 17715-17718(2006).

    [30] A HAGFELDT, G BOSCHLOO, C SUN L et al. Dye-sensitized solar cells. Chem. Rev, 110, 6595-6663(2010).

    [31] V THAVASI, V RENUGOPALAKRISHNAM, R JOSE et al. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mat. Sci. Eng. R, 63, 81-89(2009).

    [32] W LIU, H WANG, X WANG et al. Titanium mesh supported TiO2 nanowire arrays/Nb-doped TiO2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties. J. Mater. Chem.C, 4, 11118-11128(2016).

    [33] Q LIU W, X KOU D, L CAI M et al. The intrinsic relation between the dynamic response and surface passivation in dye-sensitized solar cells based on different electrolytes. J. Phys. Chem.C, 114, 9965-9969(2010).

    [34] B QADIR M, C SUN K, A SAHITO I et al. Composite multi-functional over layer: a novel design to improve the photovoltaic performance of DSSC. Sol. Energ. Mat. Sol. C, 140, 141-149(2015).

    Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure[J]. Journal of Inorganic Materials, 2019, 34(6): 590
    Download Citation