[1] Han J C, Zhang Z, Cao J et al. Prediction of winter wheat yield based on multi-source data and machine learning in China[J]. Remote Sensing, 12, 236(2020).
[2] Huang M, Kim M S, Delwiche S R et al. Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio[J]. Journal of Food Engineering, 181, 10-19(2016).
[3] Hlali A, Houaneb Z, Zairi H. Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved Wave Concept Iterative Process method[J]. Optik, 181, 423-431(2019).
[4] Jiang Y Y, Li G M, Lv M et al. Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy[J]. Chinese Physics B, 29, 098705(2020).
[5] Jiang Y Y, Wang F, Ge H Y et al. Identification of unsound grains in wheat using deep learning and terahertz spectral imaging technology[J]. Agronomy, 12, 1093(2022).
[6] Bokhari B, Bhagyaveni M A, Rajkumar R. On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications[J]. Applied Physics A, 127, 467(2021).
[7] Veeraselvam A, Mohammed G N A, Savarimuthu K et al. A novel multi-band biomedical sensor for THz regime[J]. Optical and Quantum Electronics, 53, 354(2021).
[8] Doria A, Gallerano G P, Giovenale E et al. An alternative phase-sensitive THz imaging technique for art conservation: History and new developments at the ENEA center of Frascati[J]. Applied Sciences, 10, 7661(2020).
[9] Krügener K, Busch S F, Soltani A et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 495-502(2017).
[10] Yang Q R, Wu L P, Shi C J et al. Qualitative and quantitative analysis of caffeine in medicines by terahertz spectroscopy using machine learning method[J]. IEEE Access, 9, 140008-140021(2021).
[11] Ajito K, Kim J Y, Ueno Y et al. Nondestructive multicomponent terahertz chemical imaging of medicine in tablets[J]. Journal of the Electrochemical Society, 161, B171-B175(2014).
[12] Shen Y, Zhao C J, Li B et al. Determination of wheat moisture using terahertz spectroscopy combined with the tabu search algorithm[J]. Analytical Methods, 13, 4120-4130(2021).
[13] Penkov N V, Goltyaev M V, Astashev M E et al. The application of terahertz time-domain spectroscopy to identification of potato late blight and fusariosis[J]. Pathogens, 10, 1336(2021).
[14] Shen Y, Yin Y X, Li B et al. Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks[J]. Computers and Electronics in Agriculture, 181, 105931(2021).
[15] Zhang J N, Yang Y, Feng X P et al. Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network[J]. Frontiers in Plant Science, 11, 821(2020).
[16] Jiang Y Y, Li G M, Ge H Y et al. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 281, 121586(2022).
[17] Chen C L P, Liu Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 29, 10-24(2017).
[18] Hsu L Y, Hu H T. QDCT-based blind color image watermarking with aid of GWO and DnCNN for performance improvement[J]. IEEE Access, 9, 155138-155152(2021).
[19] Thakur R S, Yadav R N, Gupta L. PReLU and edge‐aware filter‐based image denoiser using convolutional neural network[J]. IET Image Processing, 14, 3869-3879(2020).
[20] Huang S J, Cai N G, Pacheco P P et al. Applications of support vector machine (SVM) learning in cancer genomics[J]. Cancer Genomics & Proteomics, 15, 41-51(2018).
[21] Ni Y Q, Li M. Wind pressure data reconstruction using neural network techniques: A comparison between BPNN and GRNN[J]. Measurement, 88, 468-476(2016).
[22] Kattenborn T, Leitloff J, Schiefer F et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24-49(2021).