• Opto-Electronic Engineering
  • Vol. 44, Issue 7, 670 (2017)
Yuxuan Jia*, Qi Fan, and Yunfei Wang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.07.002 Cite this Article
    Yuxuan Jia, Qi Fan, Yunfei Wang. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670 Copy Citation Text show less
    References

    [1] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.

    [2] Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and appli-cations of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

    [3] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and re-fraction[J]. Science, 2011, 334(6054): 333–337.

    [4] Genevet P, Yu Nanfang, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101.

    [5] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plas-monic metasurfaces[J]. Nano letters, 2012, 12(9): 4932–4936.

    [6] Blanchard R, Aoust G, Genevet P, et al. Modeling nanoscale V-shaped antennas for the design of optical phased arrays[J]. Physical Review B, 2012, 85(15): 155457.

    [7] Cong Longqing, Xu Ningning, Gu Jianqiang, et al. Highly flexible broadband terahertz metamaterial quarter‐wave plate[J]. Laser & Photonics Review, 2014, 8(4): 626–632.

    [8] Yu Nanfang, Aieta F, Genevet P, et al. A broadband, back-ground-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328–6333.

    [9] Lin Jiao, Mueller J P B, Wang Qian, et al. Polariza-tion-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331–334.

    [10] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light Science & Applications, 2013, 2(3): e70.

    [11] Ni Xingjie, Kildishev A V, Shalaev V M, et al. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    [12] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    [13] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. Broadband metasurface holograms: toward complete phase and ampli-tude engineering[J]. Scientific Reports, 2016, 6: 32867.

    [14] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679–12683.

    [15] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D me-ta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

    [16] Fan Qingbin, Huo Pengcheng, Wang Daopeng, et al. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays[J]. Scientific Reports, 2017, 7: 45044.

    [17] Fan Qingbin, Wang Daopeng, Huo Pengcheng, et al. Auto-focusing airy beams generated by all-dielectric metasurface for visible light[J]. Optics Express, 2017, 25(8): 9285–9294.

    [18] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. A broadband metasurface‐based terahertz flat‐lens array[J]. Advanced Optical Materials, 2015, 3(6): 779–785.

    [19] Chen Xianzhong, Zhang Yan, Huang Lingling, et al. Ultrathin metasurface laser beam shaper[J]. Advanced Optical Materials, 2014, 2(10): 978–982.

    [20] He Jingwen, Ye Jiasheng, Wang Xinke, et al. A broadband terahertz ultrathin multi-focus lens[J]. Scientific Reports, 2016, 6: 28800.

    [21] Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940–4942.

    [22] Hu Dan, Wang Xinke, Feng Shengfei, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186–191.

    [23] Jiang Xiaoyan, Ye Jiasheng, He Jingwen, et al. An ultrathin terahertz lens with axial long focal depth based on metasur-faces[J]. Optics Express, 2013, 21(24): 30030–30038.

    [24] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plas-monic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932–4936.

    [25] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

    [26] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostruc-tures as compact Bessel beam generators[J]. Scientific Re-ports, 2016, 6: 20524.

    [27] Liu Desen. Micro optics and lens array[M]. Beijing: Science Press, 2013: 5–6.

    [28] Gu Benyuan, Yang Guozhen, Dong Bizhen, et al. General theory for performing an optical transform[J]. Applied Optics, 1986, 25(18): 3197–3206.

    [29] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C‐shape complex met-amaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567–4572.

    [30] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and ampli-tude[J]. Advanced Materials, 2014, 26(29): 5031–5036.

    Yuxuan Jia, Qi Fan, Yunfei Wang. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670
    Download Citation