• Acta Optica Sinica
  • Vol. 39, Issue 6, 0623001 (2019)
Changsheng Li1、2、*
Author Affiliations
  • 1 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
  • 2 Key Laboratory of Micro-Nano Measurement, Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100083, China
  • show less
    DOI: 10.3788/AOS201939.0623001 Cite this Article Set citation alerts
    Changsheng Li. Electro-Optic Modulation Characteristics of Optically Active and Electro-Optical Crystal and Its π-Voltage[J]. Acta Optica Sinica, 2019, 39(6): 0623001 Copy Citation Text show less
    References

    [1] Yariv A, Yeh P[M]. Photonics: optical electronics in modern communications, 377(2009).

         Yariv A, Yeh P[M]. Photonics: optical electronics in modern communications, 377(2009).

    [2] Yu K X[M]. Advanced optics, 114(2009).

         Yu K X[M]. Advanced optics, 114(2009).

    [3] Yu D Y, Tan H Y[M]. Engineering optics, 251(2015).

         Yu D Y, Tan H Y[M]. Engineering optics, 251(2015).

    [4] Hecht E[M]. Optics, 383(2017).

         Hecht E[M]. Optics, 383(2017).

    [5] Mu G G, Zhan Y L[M]. Optics, 353-354(2009).

         Mu G G, Zhan Y L[M]. Optics, 353-354(2009).

    [6] Pellat-Finet P. Measurement of the electro-optic coefficient of BSO crystals[J]. Optics Communications, 50, 275-280(1984).

         Pellat-Finet P. Measurement of the electro-optic coefficient of BSO crystals[J]. Optics Communications, 50, 275-280(1984).

    [7] Kutsaenko V V, Potapov V T, Shpilevskii R V. Bi12SiO20 fiber-optic electric field sensor[J]. Soviet Physics: Technical Physics, 30, 790-793(1985).

         Kutsaenko V V, Potapov V T, Shpilevskii R V. Bi12SiO20 fiber-optic electric field sensor[J]. Soviet Physics: Technical Physics, 30, 790-793(1985).

    [8] Gorchakov V K, Kutsaenko V V, Potapov V T. Electro-optical and magneto-optical effects in bismuth silicate crystals and optical polarization sensors using such crystals[J]. International Journal of Optoelectronics, 5, 235-250(1990).

         Gorchakov V K, Kutsaenko V V, Potapov V T. Electro-optical and magneto-optical effects in bismuth silicate crystals and optical polarization sensors using such crystals[J]. International Journal of Optoelectronics, 5, 235-250(1990).

    [9] Zhang J Z, Dong X Y, Sheng Q Q et al. Experimental research of electro-optic effect in BSO crystals[J]. Chinese Journal of Lasers, 18, 531-534(1991).

         Zhang J Z, Dong X Y, Sheng Q Q et al. Experimental research of electro-optic effect in BSO crystals[J]. Chinese Journal of Lasers, 18, 531-534(1991).

    [10] Li C S, Zeng Z, He X L. Optical voltage sensor using bismuth silicate crystal grown by hydrothermal method[J]. Journal of Optoelectronics·Laser, 25, 239-245(2014).

         Li C S, Zeng Z, He X L. Optical voltage sensor using bismuth silicate crystal grown by hydrothermal method[J]. Journal of Optoelectronics·Laser, 25, 239-245(2014).

    [11] Vachss F, Hesselink L. Measurement of the electrogyratory and electro-optic effects in BSO and BGO[J]. Optics Communications, 62, 159-165(1987).

         Vachss F, Hesselink L. Measurement of the electrogyratory and electro-optic effects in BSO and BGO[J]. Optics Communications, 62, 159-165(1987).

    [12] Li C S, Zeng Z, He X L. Simultaneous measurement of alternating voltage and current using single bismuth silicate crystal[J]. Infrared and Laser Engineering, 43, 3036-3041(2014).

         Li C S, Zeng Z, He X L. Simultaneous measurement of alternating voltage and current using single bismuth silicate crystal[J]. Infrared and Laser Engineering, 43, 3036-3041(2014).

    [13] Li C S. Linear electrooptic and electrogyration intensity modulation using crystalline quartz[J]. Acta Optica Sinica, 32, 0123002(2012).

         Li C S. Linear electrooptic and electrogyration intensity modulation using crystalline quartz[J]. Acta Optica Sinica, 32, 0123002(2012).

    [14] Li C S, Cui H, Zhang X. Optical magnetic field sensor based on electrogyratory and electrooptic compensation in single quartz crystal[J]. IEEE Sensors Journal, 18, 1427-1434(2018).

         Li C S, Cui H, Zhang X. Optical magnetic field sensor based on electrogyratory and electrooptic compensation in single quartz crystal[J]. IEEE Sensors Journal, 18, 1427-1434(2018).

    [15] Li C S, Yoshino T. Simultaneous measurement of current and voltage by use of one bismuth germanate crystal[J]. Applied Optics, 41, 5391-5397(2002).

         Li C S, Yoshino T. Simultaneous measurement of current and voltage by use of one bismuth germanate crystal[J]. Applied Optics, 41, 5391-5397(2002).

    [16] Li C S, Cui X, Yoshino T. Optical electric-power sensor by use of one bismuth germanate crystal[J]. Journal of Lightwave Technology, 21, 1328-1333(2003).

         Li C S, Cui X, Yoshino T. Optical electric-power sensor by use of one bismuth germanate crystal[J]. Journal of Lightwave Technology, 21, 1328-1333(2003).

    [17] Li C S, Yoshino T. Single-crystal magneto-optic sensor with electrically adjustable sensitivity[J]. Applied Optics, 51, 5119-5125(2012).

         Li C S, Yoshino T. Single-crystal magneto-optic sensor with electrically adjustable sensitivity[J]. Applied Optics, 51, 5119-5125(2012).

    [18] Li C S. Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor[J]. Acta Physica Sinica, 64, 047801(2015).

         Li C S. Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor[J]. Acta Physica Sinica, 64, 047801(2015).

    [19] Li C S, Cui X. Review of optical electric-power sensor[J]. Acta Optica Sinica, 38, 0328011(2018).

         Li C S, Cui X. Review of optical electric-power sensor[J]. Acta Optica Sinica, 38, 0328011(2018).

    [20] Yin X, Wang J Y, Zhang S J. The study of the electrooptic effect of the optical active crystals in the polarized light interferometric experiment[J]. Acta Optica Sinica, 23, 1484-1488(2003).

         Yin X, Wang J Y, Zhang S J. The study of the electrooptic effect of the optical active crystals in the polarized light interferometric experiment[J]. Acta Optica Sinica, 23, 1484-1488(2003).

    [21] Tian Z B, Zhang S J, Li S C. Study of propagation of light in active crystal La3Ga5SiO14 with electric field added[J]. Chinese Journal of Lasers, 32, 1539-1542(2005).

         Tian Z B, Zhang S J, Li S C. Study of propagation of light in active crystal La3Ga5SiO14 with electric field added[J]. Chinese Journal of Lasers, 32, 1539-1542(2005).

    [22] Yin X, Wang J Y. Interaction of the optical activity and electro-optic effect and its influence on the optically active crystal electro-optic Q switcher[J]. Acta Physica Sinica, 53, 3565-3570(2004).

         Yin X, Wang J Y. Interaction of the optical activity and electro-optic effect and its influence on the optically active crystal electro-optic Q switcher[J]. Acta Physica Sinica, 53, 3565-3570(2004).

    [23] Yin X, Wang J Y, Zhang S J. Study on electro-optic Q switch of La3Ga5SiO14 single crystal[J]. Chinese Journal of Lasers, 31, 29-32(2004).

         Yin X, Wang J Y, Zhang S J. Study on electro-optic Q switch of La3Ga5SiO14 single crystal[J]. Chinese Journal of Lasers, 31, 29-32(2004).

    [24] Tabor W J, Chen F S. Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite[J]. Journal of Applied Physics, 40, 2760-2765(1969).

         Tabor W J, Chen F S. Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite[J]. Journal of Applied Physics, 40, 2760-2765(1969).

    [25] Kaminsky W. Experimental and phenomenological aspects of circular birefringence and related properties in transparent crystals[J]. Reports on Progress in Physics, 63, 1575-1640(2000).

         Kaminsky W. Experimental and phenomenological aspects of circular birefringence and related properties in transparent crystals[J]. Reports on Progress in Physics, 63, 1575-1640(2000).

    [26] Li C S, Cui X. Coupled-wave analysis on the electro-optic and magnetooptic interaction in BSO crystal and its application to sensors[J]. Acta Photonica Sinica, 27, 132-136(1998).

         Li C S, Cui X. Coupled-wave analysis on the electro-optic and magnetooptic interaction in BSO crystal and its application to sensors[J]. Acta Photonica Sinica, 27, 132-136(1998).

    [27] Liao Y B[M]. Polarization optics, 155(2003).

         Liao Y B[M]. Polarization optics, 155(2003).

    [28] Xu X W, Liao J Y. Progress in study on crystal growth of bismuth silicon oxide[J]. Journal of Inorganic Materials, 9, 129-138(1994).

         Xu X W, Liao J Y. Progress in study on crystal growth of bismuth silicon oxide[J]. Journal of Inorganic Materials, 9, 129-138(1994).

    [29] Xie K C. The optical rotation characteristics of Bi12SiO20 crystals[J]. Piezoelectrics & Acoustooptics, 13, 22-25, 4(1991).

         Xie K C. The optical rotation characteristics of Bi12SiO20 crystals[J]. Piezoelectrics & Acoustooptics, 13, 22-25, 4(1991).

    [30] Li C S. Optical voltage sensor using angular optical biasing in lithium niobate crystal[J]. Chinese Journal of Sensors and Actuators, 20, 1494-1497(2007).

         Li C S. Optical voltage sensor using angular optical biasing in lithium niobate crystal[J]. Chinese Journal of Sensors and Actuators, 20, 1494-1497(2007).

    [31] Li C S, Shen X L, Zeng R. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal[J]. Applied Optics, 52, 7580-7585(2013).

         Li C S, Shen X L, Zeng R. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal[J]. Applied Optics, 52, 7580-7585(2013).

    [32] Maldonado T A, Gaylord T K. Accurate method to determine the eigenstates of polarization in gyrotropic media[J]. Applied Optics, 28, 2075-2086(1989).

         Maldonado T A, Gaylord T K. Accurate method to determine the eigenstates of polarization in gyrotropic media[J]. Applied Optics, 28, 2075-2086(1989).

    [33] Han S H, Wu J W. Polarization-interferometry measurement of the Pockels coefficient in a chiral Bi12SiO20 single crystal[J]. Journal of the Optical Society of America B, 17, 1205-1210(2000).

         Han S H, Wu J W. Polarization-interferometry measurement of the Pockels coefficient in a chiral Bi12SiO20 single crystal[J]. Journal of the Optical Society of America B, 17, 1205-1210(2000).

    [34] She W L, Lee W K. Wave coupling theory of linear electrooptic effect[J]. Optics Communications, 195, 303-311(2001). http://www.sciencedirect.com/science/article/pii/S0030401801013451

         She W L, Lee W K. Wave coupling theory of linear electrooptic effect[J]. Optics Communications, 195, 303-311(2001). http://www.sciencedirect.com/science/article/pii/S0030401801013451

    [35] Xie N, Qiu X M, Xu Q F et al. Regulation of bismuth germanate electro-optic crystal's half-wave voltage[J]. Infrared and Laser Engineering, 47, 0420003(2018).

         Xie N, Qiu X M, Xu Q F et al. Regulation of bismuth germanate electro-optic crystal's half-wave voltage[J]. Infrared and Laser Engineering, 47, 0420003(2018).

    [36] Montemezzani G, Pfändler S, Günter P. Electro-optic and photorefractive properties of Bi4Ge3O12 crystals in the ultraviolet spectral range[J]. Journal of the Optical Society of America B, 9, 1110-1117(1992).

         Montemezzani G, Pfändler S, Günter P. Electro-optic and photorefractive properties of Bi4Ge3O12 crystals in the ultraviolet spectral range[J]. Journal of the Optical Society of America B, 9, 1110-1117(1992).

    [37] Williams P A, Rose A H, Lee K S et al. Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12)[J]. Applied Optics, 35, 3562-3569(1996).

         Williams P A, Rose A H, Lee K S et al. Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12)[J]. Applied Optics, 35, 3562-3569(1996).

    Changsheng Li. Electro-Optic Modulation Characteristics of Optically Active and Electro-Optical Crystal and Its π-Voltage[J]. Acta Optica Sinica, 2019, 39(6): 0623001
    Download Citation