• Laser & Optoelectronics Progress
  • Vol. 50, Issue 12, 120002 (2013)
Dai Ye1、* and Qiu Jianrong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop50.120002 Cite this Article Set citation alerts
    Dai Ye, Qiu Jianrong. Research Progress of Single Beam Femtosecond Laser Direct Writing Self-Organized Nanogratings in Fused Silica[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120002 Copy Citation Text show less
    References

    [1] A Assion, T Baumert, M Bergt, et al.. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses [J]. Science, 1998, 282(5390): 919-922.

    [2] D Meshulach, Y Silberberg. Coherent quantum control of two-photon transitions by a femtosecond laser pulse [J]. Nature, 1998, 396(6708): 239-242.

    [3] R R Gattassand, E Mazur. Femtosecond laser micromachining in transparent materials [J]. Nature Photon, 2008, 2(4): 219-225.

    [4] K M Davis, K Miura, N Sugimoto, et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt Lett, 1996, 21(21): 1729-1731.

    [5] E N Glezer, M Milosavljevic, L Huang, et al.. Three-dimensional optical storage inside transparent materials [J]. Opt Lett, 1996, 21(24): 2023-2025.

    [6] L Sudrie, M Franco, B Prade, et al.. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses [J]. Opt Commun, 1999, 171(4): 279-284.

    [7] P G Kazansky, H Inouye, T Mitsuyu, et al.. Anomalous anisotropic light scattering in Ge-doped silica glass [J]. Phys Rev Lett, 1999, 82(10): 2199-2202.

    [8] J D Mills, P G Kazansky, E Bricchi, et al.. Embedded anisotropic microreflectors by femtosecond-laser nanomachining [J]. Appl Phys Lett, 2002, 81(2): 196-198.

    [9] J R Qiu, P G Kazansky, J Si, et al.. Memorized polarization-dependent light scattering in rare-earth-ion-doped glass [J]. Appl Phys Lett, 2000, 77(13): 1940-1942.

    [10] Y Shimotsuma, P Kazansky, J Qiu, et al.. Self-organized nanogratings in glass irradiated by ultrashort light pulses [J]. Phys Rev Lett, 2003, 91(24): 247405.

    [11] C Hnatovsky, R S Taylor, E Simova, et al.. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica [J]. Opt Lett, 2005, 30(14): 1867-1869.

    [12] C Hnatovsky, R S Taylor, E Simova, et al.. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching [J]. Appl Phys A, 2006, 84(1-2): 47-61.

    [13] W Cai, A R Libertun, R Piestun. Polarization selective computer generated holograms realized in glass by femtosecond laser induced nanogratings [J]. Opt Express, 2006, 14(9): 3785-3791.

    [14] R Taylor, C Hnatovsky, E Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass [J]. Laser and Photon Rev, 2008, 2(1-2): 26-46.

    [15] A Couairon, L Sudrie, M Franco, et al.. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses [J]. Phys Rev B, 2005, 71(12): 125435.

    [16] L Sudrie, A Couairon, M Franco, et al.. Femtosecond laser-induced damage and filamentary propagation in fused silica [J]. Phys Rev Lett, 2002, 89(18): 186601.

    [17] A Couairon, A Mysyrowicz. Femtosecond filamentation in transparent media [J]. Phys Rep, 2007, 441(2): 47-189.

    [18] A Mermillod-Blondin, I M Burakov, Y P Meshcheryakov, et al.. Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates [J]. Phys Rev B, 2008, 77(10): 104205.

    [19] E Bricchi, P Kazansky. Extraordinary stability of anisotropic femtosecond direct written structures embedded in silica glass [J]. Appl Phys Lett, 2006, 88(11): 111119.

    [20] E Bricchi, B G Klappauf, P G Kazansky. Form birefringence and negative index change created by femtosecond direct writing in transparent materials [J]. Opt Lett, 2004, 29(1): 119-121.

    [21] S Richter, M Heinrich, S Dring, et al.. Nanogratings in fused silica: formation, control, and applications [J]. J Laser Appl, 2012, 24(4): 042008.

    [22] S J Mihailov, C W Smelser, D Grobnic, et al.. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask [J]. J Lightwave Technol, 2004, 22(1): 94-100.

    [23] V Bhardwaj, E Simova, P Rajeev, et al.. Optically produced arrays of planar nanostructures inside fused silica [J]. Phys Rev Lett, 2006, 96(5): 057404.

    [24] W J Yang, E Bricchi, P G Kazansky, et al.. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing [J]. Opt Express, 2006, 14(21): 10117-10124.

    [25] R S Taylor, C Hnatovsky, E Simova, et al.. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica [J]. Opt Lett, 2007, 32(19): 2888-2890.

    [26] Y Liao, Y Shen, L Qiao, et al.. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes [J]. Opt Lett, 2013, 38(2): 187-189.

    [27] Y Shimotsuma, M Sakakura, K Miura. Manipulation of optical anisotropy in silica glass [J]. Opt Mater Express, 2011, 1(5): 803-815.

    [28] Y Shimotsuma, K Hirao, J Qiu, et al.. Nanofabrication in transparent materials with a femtosecond pulse laser [J]. J Non-Cryst Solids, 2006, 352(6-7): 646-656.

    [29] M Sakakura, M Shimizu, Y Shimotsuma, et al.. Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses [J]. Appl Phys Lett, 2008, 93(23): 231112.

    [30] L Ramirez, M Heinrich, S Richter, et al.. Tuning the structural properties of femtosecond-laser-induced nanogratings [J]. Appl Phys A, 2010, 100(1): 1-6.

    [31] X Yu, Y Liao, F He, et al.. Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses [J]. J Appl Phys, 2011, 109(5): 053114.

    [32] M Beresna, M Geceviius, P G Kazansky, et al.. Exciton mediated self-organization in glass driven by ultrashort light pulses [J]. Appl Phys Lett, 2012, 101(5): 053120.

    [33] Y Shimotsuma, M Sakakura, P G Kazansky, et al.. Ultrafast manipulation of self-assembled form birefringence in glass [J]. Adv Mater, 2010, 22(36): 4039-4043.

    [34] K Miura, J Qiu, S Fujiwara, et al.. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions [J]. Appl Phys Lett, 2002, 80(13): 2263-2265.

    [35] S Arnold, C T Liu, B Whitten, et al.. Room-temperature microparticle-based persistent spectral hole burning memory [J]. Opt Lett, 1991, 16(6): 420-422.

    [36] A Manz, H Becker. Microsystem Technology in Chemistry and Life Sciences [M]. Berlin:Springer Verlag, 1998. 194.

    [37] Y Liao, Y Cheng, C Liu, et al.. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration [J]. Lab Chip, 2013, 13(8): 1626-1631.

    [38] F Zhang, Y Yu, C Cheng, et al.. Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser [J]. Opt Lett, 2013, 38(13): 2212-2214.

    [39] G Cheng, K Mishchik, C Mauclair, et al.. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass [J]. Opt Express, 2009, 17(12): 9515-9525.

    [40] Li Dongjuan, Lin Ling, Lü Baida, et al.. Polarization-dependent optical guiding in low repetition frequency femtosecond laser photowritten type II fused silica waveguides [J]. Acta Optica Sinica, 2013, 33(5): 0532001.

    [41] P Srisungsitthisunti, O Ersoy, X Xua. Volume Fresnel zone plates fabricated by femtosecond laser direct writing [J]. Appl Phys Lett, 2007, 90(1): 011104.

    [42] E Bricchi, J D Mills, P G Kazansky, et al.. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining [J]. Opt Lett, 2002, 27(24): 2200-2202.

    [43] S Richter, M Heinrich, S Dring, et al.. Formation of femtosecond laser-induced nanogratings at high repetition rates [J]. Appl Phys A, 2011, 104(2): 503-507.

    [44] P Rajeev, M Gertsvolf, E Simova, et al.. Memory in nonlinear ionization of transparent solids [J]. Phys Rev Lett, 2006, 97(25): 253001.

    [45] S Richter, F Jia, M Heinrich, et al.. The role of self trapped excitons and defects in the formation of nanogratings in fused silica [J]. Opt Lett, 2012, 37(4): 482-484.

    [46] H Van Driel, J Sipe, J Young. Laser-induced periodic surface structure on solids: a universal phenomenon [J]. Phys Rev Lett, 1982, 49(26): 1955-1958.

    [47] M Huang, F Zhao, Y Cheng, et al.. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser [J]. ACS Nano, 2009, 3(12): 4062-4070.

    [48] F Liang, R Vallée, S L Chin. Mechanism of nanograting formation on the surface of fused silica [J]. Opt Express, 2012, 20(4): 4389-4396.

    [49] F Liang, Q Sun, D Gingras, et al.. The transition from smooth modification to nanograting in fused silica [J]. Appl Phys Lett, 2010, 96(10): 101903.

    [50] G Petite, P Daguzan, S Guizard, et al.. Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study [J]. Nucl Instrum Methods Phys Res B, 1996, 107(1): 97-101.

    [51] P Martin, S Guizard, P Daguzan, et al.. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals [J]. Phys Rev B, 1997, 55(9): 5799-5810.

    [52] S S Mao, F Quéré, S Guizard, et al.. Dynamics of femtosecond laser interactions with dielectrics [J]. Appl Phys A, 2004, 79(7): 1695-1709.

    [53] R T Song, K S Williams. The self trapped exciton [J]. Phys Chem Solids, 1990, 51(7): 679-716.

    [54] K Tanimura, C Itoh, N Itoh. Transient optical-absorption and luminescence induced by band-to-band excitation in amorphous SiO2 [J]. J Phys C, 1988, 21(9): 1869-1876.

    [55] C Itoh, T Suzuki, N Itoh. Luminescence and defect formation in undensified and densified amorphous SiO2 [J]. Phys Rev B, 1990, 41(6):3794-3799.

    [56] J Stathis, M Kastner. Time-resolved photoluminescence in amorphous silicon dioxide [J]. Opt Lett, 1987, 35(6): 2972-2979.

    [57] D Wortmann, M Ramme, J Gottmann. Refractive index modification using fs-laser double pulses [J]. Opt Express, 2007, 15(16): 10149-10153.

    [58] S Richter, F Jia, M Heinrich, et al.. Enhanced formation of nanogratings inside fused silica due to the generation of self-trapped excitons induced by femtosecond laser pulses [C]. SPIE, 2012, 8247: 82470N.

    [59] J Chan, T Huser, S Risbud, et al.. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses [J]. Appl Phys A, 2003, 76(3): 367-372.

    [60] Y Dai, G Wu, L Xian, et al.. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica [J]. Opt Express, 2012, 20(16): 18072-18078.

    [61] Y Shimotsuma, K Hirao, J Qiu, et al.. Nano-modification inside transparent materials by femtosecond laser single beam [J]. Mod Phys Lett B, 2005, 19(5): 225-238.

    [62] C Hnatovsky, R S Taylor, P P Rajeev, et al.. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica [J]. Appl Phys Lett, 2005, 87(1): 014104.

    [63] P Salter, M Booth. Dynamic control of directional asymmetry observed in ultrafast laser direct writing [J]. Appl Phys Lett, 2012, 101(14): 141109.

    [64] P G Kazansky, W Yang, E Bricchi, et al.. “Quill” writing with ultrashort light pulses in transparent materials [J]. Appl Phys Lett, 2007, 90(15): 151120.

    [65] W Yang, P G Kazansky, Y Shimotsuma, et al.. Ultrashort pulse laser calligraphy [J]. Appl Phys Lett, 2008, 93(17): 171109.

    [66] P Kazansky, Y Shimotsuma, M Sakakura, et al.. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front [J]. Opt Express, 2011, 19(21): 20657-20664.

    [67] P Kazansky, M Beresna. Ultrafast-Laser Materials Processing Uncovers New Anisotropy Effects [OL]. http://spie.org/x38105.xml,2009-22-23.

    [68] S Akturk, X Gu, E Zeek, et al.. Pulse-front tilt caused by spatial and temporal chirp [J]. Opt Express, 2004, 12(19): 4399-4410.

    [69] D Vitek, E Block, Y Bellouard, et al.. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials [J]. Opt Express, 2010, 18(24): 24673-24678.

    [70] S Akturk, X Gu, P Bowlan, et al.. Spatio-temporal couplings in ultrashort laser pulses [J]. J Opt, 2010, 12(9): 093001.

    [71] D N Vitek, D E Adams, A Johnson, et al.. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials [J]. Opt Express, 2010, 18(17): 18086-18094.

    [72] Xia Guocai, Sun Xiaoyan, Duan Ji′an. Beam shaping technologies for high efficiency laser fabrication [J]. Laser & Optoelectronics Progress, 2012, 49(10): 100002.

    [73] Cao Lan, Yan Xiaona, Dai Ye, et al.. Space-to-time conversion by femtosecond spectrum holography [J]. Acta Optica Sinica, 2012, 32 (6): 0609001.

    CLP Journals

    [1] Zou Tao, Chen Changjun, Zhang Min, Liu Xing. Study on Laser Welding Mechanisms of Glass/Stainless-Steel and Glass/Titanium-Alloy Materials[J]. Chinese Journal of Lasers, 2016, 43(9): 902002

    [2] Wang Juechen, Zhang Fangteng, Qiu Jianrong. Research Progresson Single Femtosecond Laser Induced Nanogratings in Glass: Fundamentals and Applications[J]. Chinese Journal of Lasers, 2017, 44(1): 102001

    [3] Jing Chenrui, Wang Zhaohui, Cheng Ya. Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40005

    [4] Zhang Wei, Feng Qiang, Cheng Guanghua, Zhang Xiaobing. Femtoseoncd Laser-Induced Ablation Regimes and Thresholds in a Nickel-Based Superalloy[J]. Acta Optica Sinica, 2014, 34(12): 1232001

    Dai Ye, Qiu Jianrong. Research Progress of Single Beam Femtosecond Laser Direct Writing Self-Organized Nanogratings in Fused Silica[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120002
    Download Citation