• Laser & Optoelectronics Progress
  • Vol. 51, Issue 2, 20005 (2014)
Chen Ying1、2、*, Wang Lulu2, Liu Guangcan2, and Fu Xiquan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop51.020005 Cite this Article Set citation alerts
    Chen Ying, Wang Lulu, Liu Guangcan, Fu Xiquan. Survey on Frequency Conversion of Broadband High Power Nd:Glass laser[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20005 Copy Citation Text show less
    References

    [1] Zhou Yuliang, Sui Zhan, Liu Lanqin, et al.. Research on beam smoothing technology for high-power laser system [J]. Laser & Optoelectronics Progress, 2011, 48(10): 101407.

    [2] J R Murray, J R Smith, R B Ehrlich, et al.. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components [J]. J Opt Soc Am B, 1989, 6(12): 2402-2411.

    [3] Wang Jing, Zhang Xiaomin, Li Fuquan, et al.. Risk evaluation of transverse stimulated Raman scattering in large-aperture, high fluence KDP crystal [J]. Chinese J Lasers, 2011, 38(5): 0502011.

    [4] Deng Jianqin, Zhang Jin, Yang Hua, et al.. Condition for suppression of small-scale self-focusing of high-power laser beams by spectral bandwidth [J]. Acta Optica Sinica, 2012, 32(5): 0519001.

    [5] R Short, S Skupsky. Frequency conversion of broad-bandwidth laser light [J]. IEEE J Quantum Electronics, 1990, 26(3): 580-588.

    [6] P Baum, S Lochbrunner, E Riedle. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling [J]. Opt Lett, 2004, 29(14): 1686-1688.

    [7] L Cardoso, H Pires, G. Figueira. Increased bandwidth optical parametric amplification of supercontinuum pulses with angular dispersion [J]. Opt Lett, 2009, 34(9): 1369-1371.

    [8] K Osvay, I N Ross. Efficient tunable bandwidth frequency mixing using chirped pulses [J]. Opt Commun, 1999, 166(1): 113-119.

    [9] A C L Boscheron, C J Sauteret, A Migus. Efficient broadband frequency mixing usingphase-modulation matching [C]. SPIE, 1995, 2633: 494-500.

    [10] Qian Liejia. Chirp matched third-harmonic generation for broad-band laser [J]. Acta Optica Sinica, 1995, 15(6): 662-664.

    [11] Zeng Shuguang, Zhang Bin, Li Xianhua, et al.. A new method using chirp-matching OPCPA scheme for improving signal-to-noise ratio of ultrashort laser pulse [J]. Acta Optica Sinica, 2011, 31(7): 0719001.

    [12] Eimerl D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs [J]. Ferroelectrics, 1987, 72(1): 95-139.

    [13] C Vicario, A Trisorio, G Arisholm, et al.. Deep-ultraviolet picosecond flat-top pulses by chirp-matched sum frequency generation [J]. Opt Lett, 2012, 37(10): 1619-1621.

    [14] Li Xianhua, Zeng Shuguang, Zhang Bin, et al.. Theoretical analysis on chirp matched optical parametric chirped pulse amplification [J]. Laser & Optoelectronics Progress, 2010, 47(7): 071901.

    [15] D Eimerl, J M Auerbach, C E Barker, et al.. Multicrystal designs for efficient third-harmonic generation [J]. Opt Lett, 1997, 22(16): 1208-1210.

    [16] Li Kun, Li Keyu, Zhang Bin, et al.. Analysis of third harmonic generation of broadband laser using cascaded crystals [J]. High Power Laser and Particle Beams, 2006, 18(8): 1282-1286.

    [17] A Babushkin, R S Craxton, S Oskoui, et al.. Demonstration of thedual-tripler scheme for increased-bandwidth third-harmonic generation [J]. Opt Lett, 1998, 23(12): 927-929.

    [18] A Bayramian, S Aceves, T Anklam, et al.. Compact, efficient laser systems required for laser inertial fusion energy [J]. Fusion Science and Technology, 2011, 60(1): 28-48.

    [19] S C Kumar, G K Samanta, K Devi, et al.. High-efficiency, multicrystal, single-pass,continuous-wave second harmonic generation [J]. Opt Express, 2011, 19(12): 11152-11169.

    [20] M S Webb, D Eimerl. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP [J]. J Opt Soc Am B, 1992, 9(7): 1118-1127.

    [21] Zhu H, Wang T, Zhen W, et al.. Efficient second harmonic generation of femtosecond laser at [1 μm] [J]. Opt Express, 2004, 12(10): 2150-2155.

    [22] L E Nelson, S B Fleischer, G Lenz, et al.. Efficient frequency doubling of a femtosecond fiber laser [J]. Opt Lett, 1996, 21(21): 1759-1761.

    [23] X Liu, L J Qian, F W Wise. Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5 [J]. Opt Commun, 1997, 144(4): 265-268.

    [24] N E Yu, J H Ro, M Cha, et al.. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band [J]. Opt Lett, 2002, 27(12): 1046-1048.

    [25] Chen Ying. Study on Broadband Frequency Tripling Scheme for High Power Nd:Glass Laser System [D]. Shanghai: Fudan University, 2010. 32-38.

    [26] Zheng Wanguo. Study on Broadband Frequency Doubling Techniques for High Power Lasers [D]. Shanghai: 2006. 21-26.

    [27] Han Wei. Broadband Frequency Doubling at the Retracing Point of Phase Matching [D]. Mianyang: China Academy of Engineering Physics, 2006. 7-12.

    [28] Chen Ying, Qian Liejia, Fu Xiquan, et al.. High efficiency third-harmonic generation of broadband Nd: glass laser [J]. High Power Laser and ParticleBeams, 2011, 23(12): 3400-3404.

    [29] K Zhao, P Yuan, H Y Zhu, et al.. Narrowband pulse-enhancedupconversion of chirped broadband pulses [J]. J Opt, 2010, 12(3): 035206.

    [30] Chen Ying, Wang Lulu, Liu Guangcan, et al.. FM-to-AM effect in the frequency conversion of broadband Nd:glass laser [J]. Chinese J Lasers, 2012, 39(12): 1202009.

    CLP Journals

    [1] Zhang Junyong, Zhang Yanli, Ma Weixin, Zhu Jian, Liu De′an, Yang Lin, Zhu Jianqiang, Lin Zunqi. High-Precision Inversion Method of Pulse Shape at SGII Facility[J]. Collection Of theses on high power laser and plasma physics, 2015, 13(1): 414004

    Chen Ying, Wang Lulu, Liu Guangcan, Fu Xiquan. Survey on Frequency Conversion of Broadband High Power Nd:Glass laser[J]. Laser & Optoelectronics Progress, 2014, 51(2): 20005
    Download Citation