• Photonics Research
  • Vol. 6, Issue 2, 132 (2018)
Cheng Feng*, Stefan Preussler, and Thomas Schneider
Author Affiliations
  • Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
  • show less
    DOI: 10.1364/PRJ.6.000132 Cite this Article Set citation alerts
    Cheng Feng, Stefan Preussler, Thomas Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses[J]. Photonics Research, 2018, 6(2): 132 Copy Citation Text show less
    References

    [1] J. Capmany, B. Ortega, D. Pastor. A tutorial on microwave photonic filters. J. Lightwave Technol., 24, 201-229(2006).

    [2] D. Sadot, E. Boimovich. Tunable optical filters for dense WDM networks. IEEE Commun. Mag., 36, 50-55(1998).

    [3] J. Capmany, B. Ortega, D. Pastor, S. Sales. Discrete-time optical processing of microwave signals. J. Lightwave Technol., 23, 702-723(2005).

    [4] N. Gat. Imaging spectroscopy using tunable filters: a review. Proc. SPIE, 4056, 50-64(2000).

    [5] S. Preussler, A. Wiatrek, K. Jamshidi, T. Schneider. Brillouin scattering gain bandwidth reduction down to 3.4  MHz. Opt. Express, 19, 8565-8570(2011).

    [6] S. Preussler, T. Schneider. Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Opt. Eng., 55, 031110(2016).

    [7] A. Wiatrek, S. Preussler, K. Jamshidi, T. Schneider. Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering. Opt. Lett., 37, 930-932(2012).

    [8] W. Zhang, R. A. Minasian. Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 24, 1182-1184(2012).

    [9] W. Zhang, R. A. Minasian. Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 23, 1775-1777(2011).

    [10] R. Tao, X. Feng, Y. Cao, Z. Li, B. Guan. Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 24, 1097-1099(2012).

    [11] Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner. 12-GHz-bandwidth SBS slow light in optical fibers. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, PDP1(2006).

    [12] A. Zadok, A. Eyal, M. Tur. Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering. J. Lightwave Technol., 25, 2168-2174(2007).

    [13] T. Tanemura, Y. Takushima, K. Kikuchi. Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber. Opt. Lett., 27, 1552-1554(2002).

    [14] W. Wei, L. Yi, Y. Jaouën, W. Hu. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber. Opt. Express, 22, 23249-23260(2014).

    [15] L. Yi, W. Wei, Y. Jaouën, M. Shi, B. Han, M. Morvan, W. Hu. Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering. J. Lightwave Technol., 34, 669-675(2016).

    [16] A. Wise, M. Tur, A. Zadok. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering. Opt. Express, 19, 21945-21955(2011).

    [17] Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, A. Zadok. Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering. Photon. Res., 2, B18-B25(2014).

    [18] W. Wei, L. Yi, Y. Jaouën, M. Morvan, W. Hu. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photon. Technol. Lett., 27, 1593-1596(2015).

    [19] C. Xing, C. Ke, K. Zhang, Z. Guo, Y. Zhong, D. Liu. Polarization- and wavelength-independent SBS-based filters for high resolution optical spectrum measurement. Opt. Express, 25, 20969-20982(2017).

    [20] W. Wei, L. Yi, Y. Jaouën, W. Hu. Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump. Opt. Lett., 42, 4083-4086(2017).

    [21] M. F. Ferreira, J. F. Rocha, J. L. Pinto. Analysis of the gain and noise characteristics of fibre Brillouin amplifiers. Opt. Quantum Electron., 26, 35-44(1994).

    [22] M. Choi, I. C. Mayorga, S. Preussler, T. Schneider. Investigation of gain dependent relative intensity noise in fiber Brillouin amplification. J. Lightwave Technol., 34, 3930-3936(2016).

    [23] A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers. Opt. Express, 16, 21692-21707(2008).

    [24] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2, 1-59(2010).

    [25] W. Wei, L. Yi, Y. Jaouën, M. Morvan, W. Hu. Ultra-selective flexible add and drop multiplexer using rectangular optical filters based on stimulated Brillouin scattering. Opt. Express, 23, 19010-19021(2015).

    [26] M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, T. Schneider. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat. Commun., 4, 2898(2013).

    [27] R. S. Tucker. High-speed modulation of semiconductor lasers. J. Lightwave Technol., 3, 1180-1192(1985).

    [28] K. Y. Song, K. Hotate. 25  GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett., 32, 217-219(2007).

    [29] A. Choudhary, Y. Liu, B. Morrison, I. Aryanfar, D. Marpaung, B. J. Eggleton, K. Vu, D. Y. Choi, P. Ma, S. Madden. On-chip EIT-like RF photonic signal processor. IEEE International Topical Meeting on Microwave Photonics (MWP), 317-320(2016).

    [30] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 8, 15819(2017).

    [31] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 10, 463-467(2016).

    [32] R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton. On-chip stimulated Brillouin scattering. Opt. Express, 19, 8285-8290(2011).

    CLP Journals

    [1] Hongwei Li, Bo Zhao, Jipeng Ni, Wei Gao. Tailoring spatial structure of Brillouin spectra via spiral phase precoding[J]. Photonics Research, 2021, 9(4): 637

    Cheng Feng, Stefan Preussler, Thomas Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses[J]. Photonics Research, 2018, 6(2): 132
    Download Citation