• Photonics Research
  • Vol. 10, Issue 9, A106 (2022)
Yaocheng Shi1、*, Yong Zhang2, Yating Wan3、4, Yu Yu5, Yuguang Zhang6、7, Xiao Hu6、7, Xi Xiao6、7, Hongnan Xu1、8, Long Zhang1, and Bingcheng Pan1
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 4Electrical and Computer Engineering Department, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 5Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 6National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 7State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 8Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.456772 Cite this Article Set citation alerts
    Yaocheng Shi, Yong Zhang, Yating Wan, Yu Yu, Yuguang Zhang, Xiao Hu, Xi Xiao, Hongnan Xu, Long Zhang, Bingcheng Pan. Silicon photonics for high-capacity data communications[J]. Photonics Research, 2022, 10(9): A106 Copy Citation Text show less
    References

    [1] W. Shi, Y. Tian, A. Gervais. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics, 9, 4629-4663(2020).

    [2] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [3] J. Witzens. High-speed silicon photonics modulators. Proc. IEEE, 106, 2158-2182(2018).

    [4] S. Chen, X. Fu, J. Wang, Y. Shi, S. He, D. Dai. Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer. J. Lightwave Technol., 33, 2279-2285(2015).

    [5] J. Zhang, B. P.-P. Kuo, S. Radic. 64 Gb/s PAM4 and 160 Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt. Express, 28, 23266-23273(2020).

    [6] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [7] T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, T. Mogami. A 300-mm silicon photonics platform for large-scale device integration. IEEE J. Sel. Top. Quantum Electron., 24, 8200415(2018).

    [8] C. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).

    [9] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G.-Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [10] A. Novack, M. Streshinsky, R. Ding, Y. Liu, E.-J. Lim Andy, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Progress in silicon platforms for integrated optics. Nanophotonics, 3, 205-214(2014).

    [11] D. Liu, C. Zhang, D. Liang, D. Dai. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Opt. Express, 27, 416-422(2019).

    [12] Y. Yanagase, S. Suzuki, Y. Kokubun, S. T. Chu. Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter. J. Lightwave Technol., 20, 1525-1529(2002).

    [13] H. Wang, J. Dai, H. Jia, S. Shao, X. Fu, L. Zhang, L. Yang. Polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator waveguides. Nanophotonics, 7, 1469-1477(2018).

    [14] M. R. Watts, T. Barwicz, M. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, F. Kaertner. Microring-resonator filter with doubled free-spectral-range by two-point coupling. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, CMP3(2005).

    [15] D. Yi, Y. Zhang, H. K. Tsang. Doubling the free spectral range of a micro-ring resonator without reducing the resonator length. Asia Communications and Photonics Conference (ACPC), M3D.5(2019).

    [16] R. Boeck, J. Flueckiger, L. Chrostowski, N. A. F. Jaeger. Experimental performance of DWDM quadruple Vernier racetrack resonators. Opt. Express, 21, 9103-9112(2013).

    [17] P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, M. Asghari. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt. Express, 18, 23784-23789(2010).

    [18] D. Liu, L. Zhang, Y. Tan, D. Dai. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightwave Technol., 39, 5910-5916(2021).

    [19] Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, C. Qiu. Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators. IEEE Photon. J., 10, 6600311(2018).

    [20] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652-11658(2013).

    [21] B. Liu, Y. Zhang, Y. He, X. Jiang, J. Peng, C. Qiu, Y. Su. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Opt. Express, 25, 11359-11364(2017).

    [22] Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, Z. Zhou. Athermal and flat-topped silicon Mach-Zehnder filters. Opt. Express, 24, 29577-29582(2016).

    [23] P. Zheng, X. Xu, G. Hu, R. Zhang, B. Yun, Y. Cui. Integrated multi-functional optical filter based on a self-coupled microring resonator assisted MZI structure. J. Lightwave Technol., 39, 1429-1437(2021).

    [24] E. J. Stanton, N. Volet, J. E. Bowers. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared. Opt. Express, 25, 30651-30663(2017).

    [25] A. Stoll, Z. Zhang, R. Haynes, M. Roth. High-resolution arrayed-waveguide-gratings in astronomy: design and fabrication challenges. Photonics, 4, 30(2017).

    [26] J. F. Bauters, J. R. Adleman, M. J. Heck, J. E. Bowers. Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides. Appl. Phys. A, 116, 427-432(2014).

    [27] S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts. Optimized silicon AWG with flattened spectral response using an MMI aperture. J. Lightwave Technol., 31, 87-93(2013).

    [28] J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express, 22, 9395-9403(2014).

    [29] S. Pathak, D. Van Thourhout, W. Bogaerts. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt. Lett., 38, 2961-2964(2013).

    [30] S. Cheung, T. Su, K. Okamoto, S. J. B. Yoo. Ultra-compact silicon photonic 512 × 512 25  GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).

    [31] C. Xie, X. Zou, F. Zou, L. Yan, W. Pan, Y. Zhang. 32-channel 100  GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings. Chin. Phys. B, 30, 120703(2021).

    [32] L. Zhu, J. Sun, Y. Zhou. Silicon-based wavelength division multiplexer using asymmetric grating-assisted couplers. Opt. Express, 27, 23234-23249(2019).

    [33] D. Liu, L. Zhang, H. Jiang, D. Dai. First demonstration of an on-chip quadplexer for passive optical network systems. Photon. Res., 9, 757-763(2021).

    [34] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S.-I. Itabashi. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express, 14, 12401-12408(2006).

    [35] H. Zafar, R. Flores, R. Janeiro, A. Khilo, M. S. Dahlem, J. Viegas. High-extinction ratio polarization splitter based on an asymmetric directional coupler and on-chip polarizers on a silicon photonics platform. Opt. Express, 28, 22899-22907(2020).

    [36] Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, Y. Su. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt. Express, 24, 6586-6593(2016).

    [37] D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. V. Thourhout, G. Roelkens. Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay. IEEE Photon. Technol. Lett., 24, 482-484(2012).

    [38] H. Xu, Y. Shi. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide. Opt. Express, 25, 18485-18491(2017).

    [39] Y. Zhang, Q. Zhu, Y. He, Y. Su. Silicon polarization splitter and rotator with tolerance to width variations using a nonlinearly-tapered and partially-etched directional coupler. Optical Fiber Communication Conference (OFC), W1E.4(2019).

    [40] H. Wu, Y. Tan, D. Dai. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt. Express, 25, 6069-6075(2017).

    [41] H. Xu, D. Dai, Y. Shi. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photon. Rev., 13, 1800349(2019).

    [42] Y. Liu, H. Li, W. Chen, P. Wang, S. Dai, B. Zhang, J. Li, Y. Li, Q. Fu, T. Dai, H. Yu, J. Yang. Direct-binary-search-optimized compact silicon-based polarization beam splitter using a pixelated directional coupler. Opt. Commun., 484, 126670(2021).

    [43] W. Chen, B. Zhang, P. Wang, S. Dai, W. Liang, H. Li, Q. Fu, J. Li, Y. Li, T. Dai, H. Yu, J. Yang. Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler. Opt. Express, 28, 30701-30709(2020).

    [44] C. Li, D. Dai. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer. Opt. Lett., 42, 4243-4246(2017).

    [45] J. Zhang, M. Yu, G. Lo, D.-L. Kwong. Silicon waveguide-based mode-evolution polarization rotator. Proc. SPIE, 7719, 77190C(2010).

    [46] L. Chen, C. R. Doerr, Y.-K. Chen. Compact polarization rotator on silicon for polarization-diversified circuits. Opt. Lett., 36, 469-471(2011).

    [47] K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong. Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding. Opt. Lett., 40, 1410-1413(2015).

    [48] D. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, S. Yu. Highly efficient silicon optical polarization rotators based on mode order conversions. Opt. Lett., 41, 1070-1073(2016).

    [49] Z. Wang, D. Dai. Ultrasmall Si-nanowire-based polarization rotator. J. Opt. Soc. Am. B, 25, 747-753(2008).

    [50] M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Håkansson, P. Sanchis. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photon. Technol. Lett., 24, 2031-2034(2012).

    [51] A. Xie, L. Zhou, J. Chen, X. Li. Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt. Express, 23, 3960-3970(2015).

    [52] H. Xu, Y. Shi. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express, 27, 5588-5597(2019).

    [53] J. Chen, D. Gao. Ultra-compact polarization rotator based on mode coupling in a groove-like waveguide, assisted by subwavelength grating. Appl. Opt., 59, 5368-5376(2020).

    [54] A. Majumder, B. Shen, R. Polson, R. Menon. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express, 25, 19721-19731(2017).

    [55] W. Chang, S. Xu, M. Cheng, D. Liu, M. Zhang. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express, 28, 28343-28351(2020).

    [56] D. Dai, J. E. Bowers. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express, 19, 10940-10949(2011).

    [57] J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Opt. Express, 22, 13565-13571(2014).

    [58] L. Liu, Y. Ding, K. Yvind, J. M. Hvam. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt. Express, 19, 12646-12651(2011).

    [59] Y. Ding, L. Liu, C. Peucheret, H. Ou. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt. Express, 20, 20021-20027(2012).

    [60] Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, R. A. Soref. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photon., 1, 091304(2016).

    [61] H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler. Opt. Express, 22, 2489-2496(2014).

    [62] K. Tan, Y. Huang, G.-Q. Lo, C. Yu, C. Lee. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference (ACP), Th1G.7(2017).

    [63] Y. Ding, H. Ou, C. Peucheret. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Opt. Lett., 38, 1227-1229(2013).

    [64] D. Chen, M. Liu, Y. Zhang, L. Wang, X. Hu, P. Feng, X. Xiao, S. Yu. C+L band polarization rotator-splitter based on a compact S-bend waveguide mode demultiplexer. Opt. Express, 29, 10949-10957(2021).

    [65] L. Han, S. Liang, H. Zhu, L. Qiao, J. Xu, W. Wang. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett., 40, 518-521(2015).

    [66] D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, P. Cheben. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photon. J., 10, 2201010(2018).

    [67] N. Riesen, J. D. Love. Design of mode-sorting asymmetric Y-junctions. Appl. Opt., 51, 2778-2783(2012).

    [68] J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 38, 1854-1856(2013).

    [69] D. Dai, J. Wang, Y. Shi. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett., 38, 1422-1424(2013).

    [70] D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, H.-K. Tsang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).

    [71] M. Yin, Q. Deng, Y. Li, X. Wang, H. Li. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic-dielectric coupling. Appl. Opt., 53, 6175-6180(2014).

    [72] Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).

    [73] T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 30, 2421-2426(2012).

    [74] D. Chack, S. Hassan, M. Qasim. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt., 59, 3652-3659(2020).

    [75] Z. Wang, C. Yao, Y. Zhang, Y. Su. Compact silicon three-mode multiplexer by refractive-index manipulation on a multi-mode interferometer. Opt. Express, 29, 13899-13907(2021).

    [76] Y. He, S. An, X. Li, Y. Huang, Y. Zhang, H. Chen, Y. Su. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings. Optical Fiber Communication Conference (OFC), F3A.2(2021).

    [77] J. D. Love, N. Riesen. Single, few, and multimode Y-junctions. J. Lightwave Technol., 30, 304-309(2012).

    [78] J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, R. M. Osgood. A 60  Gb/s MDM-WDM Si photonic link with <0.7  dB power penalty per channel. Opt. Express, 22, 18543-18555(2014).

    [79] H.-C. Chung, K.-S. Lee, S.-Y. Tseng. Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics. Opt. Express, 25, 13626-13634(2017).

    [80] J. Wang, S. He, D. Dai. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photon. Rev., 8, L18-L22(2014).

    [81] J. Wang, P. Chen, S. Chen, Y. Shi, D. Dai. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express, 22, 12799-12807(2014).

    [82] J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, F. Gan. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt. Lett., 40, 1956-1959(2015).

    [83] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 26, 8162-8170(2018).

    [84] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).

    [85] D. Dai, J. Wang, S. Chen, S. Wang, S. He. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photon. Rev., 9, 339-344(2015).

    [86] Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, Y. Su. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J. Lightwave Technol., 38, 215-225(2020).

    [87] Y. Huang, Y. He, H. Chen, H. Huang, Y. Zhang, N. Ye, N. K. Fontaine, R. Ryf, Y. Song, Q. Zhang, Y. Su, M. Wang. On-chip mode-division multiplexing transmission with modal crosstalk mitigation employing low-coherence matched detection. J. Lightwave Technol., 39, 2008-2014(2021).

    [88] Y. Su, Y. He, H. Chen, X. Li, G. Li. Perspective on mode-division multiplexing. Appl. Phys. Lett., 118, 200502(2021).

    [89] Y. Tong, W. Zhou, X. Wu, H. K. Tsang. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J. Quantum Electron., 56, 8400107(2019).

    [90] D. Dai, M. Mao. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt. Express, 23, 28376-28388(2015).

    [91] J. Zhu, H. Huang, Y. Zhao, Y. Li, Z. Sheng, F. Gan. Efficient silicon integrated four-mode edge coupler for few-mode fiber coupling. Chin. Opt. Lett., 20, 011302(2022).

    [92] O. A. Jimenez Gordillo, U. D. Dave, M. Lipson. One-to-one coupling higher order modes in a fiber to higher order modes in silicon waveguide. Conference on Lasers and Electro-Optics, SW3C.4(2021).

    [93] W. Shen, J. Du, J. Xiong, L. Ma, Z. He. Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100  Gbps/lambda MDM optical interconnection. Opt. Express, 28, 33254-33262(2020).

    [94] A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon., 3, 024003(2021).

    [95] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, C. Galland. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 22, 10487-10493(2014).

    [96] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [97] W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov. Ultra-compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator. Opt. Express, 15, 17106-17113(2007).

    [98] S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner. Operation and optimization of silicon-diode-based optical modulators. IEEE J. Sel. Top. Quantum Electron., 16, 165-172(2010).

    [99] S. Akiyama, T. Baba, M. Imai, M. Mori, T. Usuki. High-performance silicon modulator for integrated transceivers fabricated on 300-mm wafer. European Conference on Optical Communication (ECOC), 1-3(2014).

    [100] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine. Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).

    [101] S. Tanaka, T. Simoyama, T. Aoki, T. Mori, S. Sekiguchi, S. H. Jeong, T. Usuki, Y. Tanaka, K. Morito. Ultralow-power (1.59  mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver. J. Lightwave Technol., 36, 1275-1280(2018).

    [102] Y. Sobu, T. Simoyama, S. Tanaka, Y. Tanaka, K. Morito. 70 Gbaud operation of all-silicon Mach–Zehnder modulator based on forward-biased PIN diodes and passive equalizer. 24th OptoElectronics and Communications Conference (OECC) and International Conference on Photonics in Switching and Computing (PSC), 1-3(2019).

    [103] Y. Sobu, S. Tanaka, Y. Tanaka, Y. Akiyama, T. Hoshida. High-speed, multi-level operation of all-silicon segmented modulator for optical DAC transmitter. IEEE Photonics Conference (IPC), 1-2(2020).

    [104] A. Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427, 615-618(2004).

    [105] M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, K. Shastri. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. 11th International Conference on Group IV Photonics (GFP), 1-2(2014).

    [106] M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, K. Shastri. Silicon photonic modulator based on a MOS-capacitor and a CMOS driver. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4(2014).

    [107] M. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, K. Shastri. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers. Optical Fiber Communications Conference and Exhibition (OFC), W4H.3(2015).

    [108] D. J. Thomson, W. Zhang, K. Debnath, B. Chen, K. Li, S. Liu, M. Ebert, J. D. Reynolds, F. Meng, A. Z. Khokhar, C. G. Littlejohns, J. Byers, M. K. Husain, F. Y. Gardes, S. Saito, G. T. Reed. High performance silicon optical modulators. International Conference on Transparent Optical Networks (ICTON), Tu.D5.5(2020).

    [109] K. Debnath, D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronard, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, S. Saito. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photon. Res., 6, 373-379(2018).

    [110] W. Zhang, K. Debnath, B. Chen, K. Li, S. Liu, M. Ebert, J. D. Reynolds, A. Z. Khokhar, C. Littlejohns, J. Byers, M. K. Husain, F. Y. Gardes, S. Saito, D. J. Thomson. High bandwidth capacitance efficient silicon MOS modulator. J. Lightwave Technol., 39, 201-207(2021).

    [111] K. Goi, K. Ogawa, Y. T. Tan, V. Dixit, S. T. Lim, C. E. Png, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong. Silicon Mach-Zehnder modulator using low-loss phase shifter with bottom PN junction formed by restricted-depth doping. IEICE Electron. Express, 10, 20130552(2013).

    [112] J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, H. Rong. A 128  Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).

    [113] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [114] Y. Maegami, G. Cong, M. Ohno, M. Okano, K. Itoh, N. Nishiyama, S. Arai, K. Yamada. High-efficiency silicon Mach-Zehnder modulator with vertical PN junction based on fabrication-friendly strip-loaded waveguide. International Conference on Group IV Photonics (GFP), 21-22(2017).

    [115] G. Zhou, L. Zhou, Y. Zhou, Y. Zhong, S. Liu, Y. Guo, L. Liu, J. Chen. Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction. Proc. SPIE, 10964, 1096419(2018).

    [116] Z. Yong, W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, J. K. S. Poon. U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. Opt. Express, 25, 8425-8439(2017).

    [117] X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu. 25  Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt. Express, 20, 2507-2515(2012).

    [118] E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts. An ultralow power athermal silicon modulator. Nat. Commun., 5, 4008(2014).

    [119] X. Tu, T.-Y. Liow, J. Song, M. Yu, G. Q. Lo. Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt. Express, 19, 18029-18035(2011).

    [120] A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, G. T. Reed, J. Martí, P. Sanchis. Slow-light-enhanced silicon optical modulators under low-drive-voltage operation. IEEE Photon. J., 4, 1306-1315(2012).

    [121] P. Xia, H. Yu, Q. Zhang, X. Wang, Z. Fu, Q. Huang, X. Jiang, J. Yang. Silicon DC Kerr modulator enhanced by slow light for 112  Gbit/s PAM4. Asia Communications and Photonics Conference (ACP), T2I.1(2021).

    [122] C. Han, M. Jin, Y. Tao, B. Shen, H. Shu, X. Wang. Ultra-compact silicon modulator with 110  GHz bandwidth. Optical Fiber Communications Conference and Exhibition (OFC), Th4C.5(2022).

    [123] D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D. V. Plant. High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express, 22, 26788-26802(2014).

    [124] X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, Y. Yu. Highly efficient silicon Michelson interferometer modulators. IEEE Photon. Technol. Lett., 25, 407-409(2013).

    [125] M. Wang, L. Zhou, H. Zhu, Y. Zhou, Y. Zhong, J. Chen. Low-loss high-extinction-ratio single-drive push-pull silicon Michelson interferometric modulator. Chin. Opt. Lett., 15, 042501(2017).

    [126] Y. Zhou, L. Zhou, H. Zhu, C. Wong, Y. Wen, L. Liu, X. Li, J. Chen. Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator. Photon. Res., 4, 153-161(2016).

    [127] H. Yu, W. Bogaerts. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J. Lightwave Technol., 30, 1602-1609(2012).

    [128] H. Bahrami, H. Sepehrian, C. S. Park, L. A. Rusch, W. Shi. Time-domain large-signal modeling of traveling-wave modulators on SOI. J. Lightwave Technol., 34, 2812-2823(2016).

    [129] D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, D. V. Plant. Design, analysis, and transmission system performance of a 41  GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).

    [130] X. Wang, W. Shen, W. Li, Y. Liu, Y. Yao, J. Du, Q. Song, K. Xu. High-speed silicon photonic Mach–Zehnder modulator at 2  μm. Photon. Res., 9, 535-540(2021).

    [131] M. S. Alam, X. Li, M. Jacques, Z. Xing, A. Samani, E. El-Fiky, P.-C. Koh, D. V. Plant. Net 220  Gbps/λ IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZM. J. Lightwave Technol., 39, 4270-4278(2021).

    [132] J. Zhou, J. Wang, L. Zhu, Q. Zhang. High baud rate all-silicon photonics carrier depletion modulators. J. Lightwave Technol., 38, 272-281(2019).

    [133] P. Dong, L. Chen, Y.-K. Chen. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express, 20, 6163-6169(2012).

    [134] L. Chen, C. R. Doerr, P. Dong, Y.-K. Chen. Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing. Opt. Express, 19, B946-B951(2011).

    [135] X. Xiao, M. Li, Z. Li, L. Wang, Q. Yang, S. Yu. Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations. Optical Fiber Communications Conference and Exhibition (OFC), Th4H.5(2016).

    [136] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photon. Res., 6, 109-116(2018).

    [137] K. Li, S. Liu, D. J. Thomson, W. Zhang, X. Yan, F. Meng, C. G. Littlejohns, H. Du, M. Banakar, M. Ebert, W. Cao, D. Tran, B. Chen, A. Shakoor, P. Petropoulos, G. T. Reed. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 7, 1514-1516(2020).

    [138] Q. Liao, M. Li, Z. Zhang, J. Liu, N. Wu, X. Xiao, N. Qi. A 50  Gb/s high-efficiency Si-photonic transmitter with lump-segmented MZM and integrated PAM4 CDR. IEEE Custom Integrated Circuits Conference (CICC), 1-2(2021).

    [139] A. Giuglea, G. Belfiore, M. Khafaji, R. Henker, D. Petousi, G. Winzer, L. Zimmermann, F. Ellinger. Comparison of segmented and traveling-wave electro-optical transmitters based on silicon photonics Mach-Zehnder modulators. Photonics in Switching and Computing (PSC), 1-3(2018).

    [140] S. Fathololoumi, K. Nguyen, H. Mahalingam, M. Sakib, Z. Li, C. Seibert, M. Montazeri, J. Chen, J. K. Doylend, H. Jayatilleka, C. Jan, J. Heck, R. Venables, H. Frish, R. A. Defrees, R. S. Appleton, S. Hollingsworth, S. McCargar, R. Jones, D. Zhu, Y. Akulova, L. Liao. 1.6  Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications. Optical Fiber Communications Conference and Exhibition (OFC), T3H.1(2020).

    [141] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [142] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express, 17, 22484-22490(2009).

    [143] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 19, 95-113(2013).

    [144] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcıa, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).

    [145] P. Liao, M. Sakib, D. Huang, R. Kumar, X. Wu, C. Ma, G.-L. Su, H. Rong. A 260  Gb/s/λ PDM link with silicon photonic dual-polarization transmitter and polarization demultiplexer. European Conference and Exhibition on Optical Communications (ECOC), 1-4(2021).

    [146] Y. Zhang, H. Zhang, M. Li, P. Feng, L. Wang, X. Xiao, S. Yu. 200  Gbit/s optical PAM4 modulation based on silicon microring modulator. European Conference and Exhibition on Optical Communications (ECOC), Th3A-1(2020).

    [147] M. Sakib, P. Liao, C. Ma, R. Kumar, D. Huang, G.-L. Su, X. Wu, S. Fathololoumi, H. Rong. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud. Conference on Lasers and Electro-Optics (CLEO), SF1C.3(2021).

    [148] D. Zheng, C. Qiu, H. Zhang, X. Jiang, Y. Su. Demonstration of a push-pull silicon dual-ring modulator with enhanced optical modulation amplitude. J. Lightwave Technol., 38, 3694-3700(2020).

    [149] S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. D. Heyn, J. Van Campenhout, N. Pleros. A 4 × 40 Gb/s O-band WDM silicon photonic transmitter based on micro-ring modulators. Optical Fiber Communications Conference and Exhibition (OFC), W3E.2(2019).

    [150] H. Gevorgyan, A. Khilo, M. T. Wade, V. M. Stojanović, M. A. Popoví. MOSCAP ring modulator with 1.5  μm radius, 8.5  THz FSR and 30  GHz/V shift efficiency in a 45  nm SOI CMOS process. Optical Fiber Communications Conference and Exhibition (OFC), Th5A.3(2021).

    [151] C.-M. Chang, G. de Valicourt, S. Chandrasekhar, P. Dong. Differential microring binary phase-shift keying modulators. European Conference and Exhibition on Optical Communications (ECOC), 1-3(2016).

    [152] P. Dong, C. Xie, L. Chen, N. K. Fontaine, Y.-K. Chen. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett., 37, 1178-1180(2012).

    [153] P. Dong, C. Xie, L. L. Buhl, Y.-K. Chen. Silicon microring modulators for advanced modulation formats. Optical Fiber Communications Conference and Exhibition (OFC), OW4J.2(2013).

    [154] X. Wu, B. Guan, Q. Xu, C. Doerr, L. Chen. Low-chirp push-pull dual-ring modulator with 144  Gb/s PAM-4 data transmission. Opt. Express, 28, 26492-26498(2020).

    [155] R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, D. V. Plant. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Opt. Express, 25, 13222-13229(2017).

    [156] Q. Xu, B. Schmidt, J. Shakya, M. Lipson. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express, 14, 9431-9436(2006).

    [157] H. Li, Z. Xuan, R. Kumar, M. Sakib, J. Sharma, C.-M. Hsu, C. Ma, H. Rong, G. Balamurugan, J. Jaussi. A 4 × 50  Gb/s all-silicon ring-based WDM transceiver with CMOS IC. European Conference on Optical Communication (ECOC), 1-3(2021).

    [158] T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express, 17, 22505-22513(2009).

    [159] A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, M. Notomi. Compact 1D-silicon photonic crystal electro- optic modulator operating with ultra-low switching voltage and energy. Opt. Express, 22, 28623-28634(2014).

    [160] K. A. Qubaisi, D. Onural, H. Gevorgyan, M. A. Popoví. Photonic crystal modulator in a CMOS foundry platform. Optical Fiber Communications Conference and Exhibition (OFC), F4B.1(2021).

    [161] Y. Zhang, D. Wu, L. Wang, X. Xiao. 70  Gbit/s optical NRZ modulation based on silicon photonic crystal modulator. Asia Communications and Photonics Conference (ACP), T2D.3(2021).

    [162] H. Li, G. Balamurugan, T. Kim, M. N. Sakib, R. Kumar, H. Rong, J. Jaussi, B. Casper. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits, 56, 19-29(2021).

    [163] Y. Zhang, Y. Shi. Temperature insensitive lower-index-mode photonic crystal nanobeam cavity. Opt. Lett., 40, 264-267(2015).

    [164] F. Zhang, Y. Zhu, F. Yang, L. Zhang, X. Ruan, Y. Li, Z. Chen. Up to single lane 200G optical interconnects with silicon photonic modulator. Optical Fiber Communications Conference and Exhibition (OFC), Th4A.6(2019).

    [165] S. Zhalehpour, M. Guo, J. Lin, Z. Zhang, Y. Qiao, W. Shi, L. A. Rusch. System optimization of an all-silicon IQ modulator: achieving 100  Gbaud dual polarization 32QAM. J. Lightwave Technol., 38, 256-264(2019).

    [166] J. Zhou, J. Wang, L. Zhu, Q. Zhang. Silicon photonics for 100 Gbaud. J. Lightwave Technol., 39, 857-867(2020).

    [167] M. S. Alam, X. Li, M. Jacques, E. Berikaa, P.-C. Koh, D. V. Plant. Net 300  Gbps/λ transmission over 2  km of SMF with a silicon photonic Mach-Zehnder modulator. IEEE Photon. Technol. Lett., 33, 1391-1394(2021).

    [168] F. Hu, Y. Zhang, H. Zhang, Z. Li, S. Xing, J. Shi, J. Zhang, X. Xiao, N. Chi, Z. He, S. Yu. Beyond 300  Gbps silicon microring modulator with AI acceleration(2021).

    [169] X. Wu, Z. Hu, Y. Tong, D. Huang, C.-K. Chan, J. Bowers, H. K. Tsang. 256  Gb/s PAM4 signal transmission with microring modulator based monolithic dual-polarization silicon transmitter. Asia Communications and Photonics Conference (ACP), T2D.3(2019).

    [170] F. Zhang, L. Zhang, X. Ruan, F. Yang, H. Ming, Y. Li. High baud rate transmission with silicon photonic modulators. IEEE J. Sel. Top. Quantum Electron., 27, 8300709(2021).

    [171] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [172] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [173] P. Kharel, C. Reimer, K. Luke, L. He, M. Zhang. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).

    [174] B. Pan, J. Hu, Y. Huang, L. Song, J. Wang, P. Chen, Z. Yu, L. Liu, D. Dai. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021).

    [175] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [176] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, S. Mookherjea. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100  GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728-23739(2018).

    [177] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [178] C. Zhang, D. Huang, J. E. Bowers, P. Pintus, P. Morton, T. Mizumoto, Y. Shoji. Dynamically reconfigurable integrated optical circulators. Optica, 4, 23-30(2017).

    [179] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, J. E. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [180] . Silicon photonics and photonic integrated circuits.

    [181] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag., 13, 17-26(2019).

    [182] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2019).

    [183] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [184] R. Won. Integrating silicon photonics. Nat. Photonics, 4, 498-499(2010).

    [185] D. Liang, J. E. Bowers, D. Liang, J. E. Bowers. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manuf., 2, 59-83(2021).

    [186] C. Xiang, W. Jin, D. Huang, M. A. Tran, J. Guo, Y. Wan, W. Xie, G. Kurczveil, A. Netherton, D. Liang, H. Rong, J. E. Bowers. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2021).

    [187] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev., 4, 751-779(2010).

    [188] J. M. Ramirez, H. Elfaiki, T. Verolet, C. Besancon, A. Gallet, D. Néel, K. Hassan, S. Olivier, C. Jany, S. Malhouitre, K. Gradkowski, P. E. Morrissey, P. O’Brien, C. Caillaud, N. Vaissière, J. Decobert, S. Lei, R. Enright, A. Shen, M. Achouche. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100213(2020).

    [189] T. K. Shinji Matsuo. Low-operating-energy directly modulated lasers for shortdistance optical interconnects. Adv. Opt. Photon., 10, 567-643(2018).

    [190] S. J. Zhang, Y. Liu, R. G. Lu, B. Sun, L. S. Yan. Heterogeneous III–V silicon photonic integration: components and characterization. Front. Inf. Technol. Electron. Eng., 20, 472-480(2019).

    [191] S. Fathpour. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics, 4, 143-164(2015).

    [192] M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, J. E. Bowers. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon III–V photonics. Appl. Sci., 8, 1139(2018).

    [193] W. Jin, Q. F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [194] C. T. Santis, Y. Vilenchik, A. Yariv, N. Satyan, G. Rakuljic. Sub-kHz quantum linewidth semiconductor laser on silicon chip. CLEO: Science and Innovations, JTh5A.7(2015).

    [195] M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, J. E. Bowers. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500514(2019).

    [196] C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers. A narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2019).

    [197] P. A. Morton, M. J. Morton. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Lightwave Technol., 36, 5048-5057(2018).

    [198] C. Zhang, H. Park, M. A. Tran, T. Komljenovic. Heterogeneous silicon nitride photonics. Optica, 7, 336-337(2020).

    [199] A. Spott, C. D. Merritt, C. S. Kim, D. Botez, E. J. Stanton, I. Vurgaftman, J. Kirch, J. R. Meyer, J. E. Bowers, J. Peters, L. J. Mawst, M. L. Davenport, W. W. Bewley. Quantum cascade laser on silicon. Optica, 3, 545-551(2016).

    [200] Y. Wan, C. Xiang, J. Guo, R. Koscica, M. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 2100057(2021).

    [201] T. Kamei, T. Kamikawa, M. Araki, S. P. DenBaars, S. Nakamura, J. E. Bowers. Research toward a heterogeneously integrated InGaN laser on silicon. Phys. Status solidi, 217, 1900770(2020).

    [202] A. Malik, A. Spott, E. J. Stanton, J. D. Peters, J. D. Kirch, L. J. Mawst, D. Botez, J. R. Meyer, J. E. Bowers. Integration of mid-infrared light sources on silicon-based waveguide platforms in 3.5–4.7  μm wavelength range. IEEE J. Sel. Top. Quantum Electron., 25, 1502809(2019).

    [203] C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, J. E. Bowers. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photon., 8, 2555-2566(2021).

    [204] Y. Wan, J. Norman, S. Liu, A. Liu, J. E. Bowers. Quantum dot lasers and amplifiers on silicon: recent advances and future developments. IEEE Nanotechnol. Mag., 15, 8-22(2021).

    [205] S. Hepp, M. Jetter, S. L. Portalupi, P. Michler. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol., 2, 1900020(2019).

    [206] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [207] C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, J. E. Bowers. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8, 749-754(2021).

    [208] G. Kurczveil, D. Liang, M. Fiorentino, R. G. Beausoleil. Robust hybrid quantum dot laser for integrated silicon photonics. Opt. Express, 24, 16167-16174(2016).

    [209] S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens. 1.3  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express, 26, 18302-18309(2018).

    [210] D. Liang, S. Srinivasan, A. Descos, C. Zhang, G. Kurczveil, Z. Huang, R. Beausoleil. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).

    [211] A. Malik, J. Guo, M. A. Tran, G. Kurczveil, D. Liang, J. E. Bowers. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon. Res., 8, 1551-1557(2020).

    [212] M. Osinski, J. Buus. Linewidth broadening factor in semiconductor lasers–An overview. IEEE J. Quantum Electron., 23, 9-29(1987).

    [213] Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, Y. Tong, C. Shang, J. J. He, H. K. Tsang, A. C. Gossard, J. E. Bowers. Directly modulated single-mode tunable quantum dot lasers at 1.3 μm. Laser Photon. Rev., 14, 1900348(2020).

    [214] Y. Ding, Z. Lv, Z. Zhang, H. Yuan, T. Yang. Single longitudinal mode GaAs-based quantum dot laser with refractive index perturbation. Appl. Opt., 59, 1648-1653(2020).

    [215] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).

    [216] C. Shang, J. Selvidge, E. Hughes, J. C. Norman, A. A. Taylor, A. C. Gossard, K. Mukherjee, J. E. Bowers. A pathway to thin GaAs virtual substrate on on-axis Si(001) with ultralow threading dislocation density. Phys. Status Solidi, 218, 2000402(2021).

    [217] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [218] T. Zhou, M. Tang, G. Xiang, B. Xiang, S. Hark, M. Martin, T. Baron, S. Pan, J. S. Park, Z. Liu, S. Chen, Z. Zhang, H. Liu. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat. Commun., 11, 1(2020).

    [219] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).

    [220] S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 41  Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [221] Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, J. E. Bowers. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express, 25, 27715-27723(2017).

    [222] S. Liu, J. Norman, M. Dumont, D. Jung, A. Torres, A. C. C. Gossard, J. E. E. Bowers, S. Liu, A. Torres, A. C. C. Gossard, J. E. E. Bowers, S. Liu, D. Jung, A. C. C. Gossard, J. E. E. Bowers, J. Norman, M. Dumont, A. C. C. Gossard, J. E. E. Bowers, D. Jung. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photon., 6, 2523-2529(2019).

    [223] Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers. 1.3  μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon. Rev., 14, 2000037(2020).

    [224] Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, A. Dries Van Thourhout, D. Van Thourhout. Optical pumped InGaAs GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica, 4, 1468-1473(2017).

    [225] Y. Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong, K. M. Lau. Bufferless 1.5  μm III–V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms. Optica, 7, 148-153(2020).

    [226] L. Chen, M. Lipson. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express, 17, 7901-7906(2009).

    [227] G. Masini, S. Sahni, G. Capellini, J. Witzens, C. Gunn. High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process. Adv. Opt. Technol., 2008, 196572(2008).

    [228] J. Joo, S. Kim, I. G. Kim, K. S. Jang, G. Kim. High-sensitivity 10  Gbps Ge-on-Si photoreceiver operating at lambda similar to 1.55  μm. Opt. Express, 18, 16474-16479(2010).

    [229] D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kartner. High performance, waveguide integrated Ge photodetectors. Opt. Express, 15, 3916-3921(2007).

    [230] D. Ahn, L. C. Kimerling, J. Michel. Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon-on-insulator/germanium-on-insulator substrates. J. Appl. Phys., 110, 083115(2011).

    [231] L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J. M. Fedeli. Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon. Opt. Express, 20, 1096-1101(2012).

    [232] D. Benedikovic, L. Virot, G. Aubin, J. M. Hartmann, F. Amar, B. Szelag, X. Le Roux, C. Alonso-Ramos, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. M. Fedeli, C. Kopp, L. Vivien. Comprehensive study on chip-integrated germanium pin photodetectors for energy-efficient silicon interconnects. IEEE J. Quantum Electron., 56, 8400409(2020).

    [233] A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt. Express, 21, 28387-28393(2013).

    [234] N. A. DiLello, D. K. Johnstone, J. L. Hoyt. Characterization of dark current in Ge-on-Si photodiodes. J. Appl. Phys., 112, 054506(2012).

    [235] M. Currie, S. Samavedam, T. Langdo, C. Leitz, E. Fitzgerald. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett., 72, 1718-1720(1998).

    [236] M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J.-M. Fédéli. Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55  μm operation. Appl. Phys. Lett., 87, 231109(2005).

    [237] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett., 75, 2909-2911(1999).

    [238] M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers. Process flow innovations for photonic device integration in CMOS. Proc. SPIE, 6898, 689804(2008).

    [239] J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, H. Von Känel. Ultralow dark current Ge/Si (100) photodiodes with low thermal budget. Appl. Phys. Lett., 94, 201106(2009).

    [240] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett., 17, 1510-1512(2005).

    [241] M. Morse, O. Dosunmu, G. Sarid, Y. Chetrit. Performance of Ge-on-Si pin photodetectors for standard receiver modules. IEEE Photon. Technol. Lett., 18, 2442-2444(2006).

    [242] M. J. Byrd, E. Timurdogan, Z. Su, C. V. Poulton, N. M. Fahrenkopf, G. Leake, D. D. Coolbaugh, M. R. Watts. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt. Lett., 42, 851-854(2017).

    [243] H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens. –1  V bias 67  GHz bandwidth Si-contacted germanium waveguide pin photodetector for optical links at 56 Gbps and beyond. Opt. Express, 24, 4622-4631(2016).

    [244] C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids. Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current. Opt. Express, 19, 24897-24904(2011).

    [245] M. Huang, S. Li, P. Cai, G. Hou, T.-I. Su, W. Chen, C.-Y. Hong, D. Pan. Germanium on silicon avalanche photodiode. IEEE J. Sel. Top. Quantum Electron., 24, 3800911(2017).

    [246] G. Chen, Y. Yu, S. Deng, L. Liu, X. Zhang. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt. Express, 23, 25700-25706(2015).

    [247] M. M. P. Fard, G. Cowan, O. Liboiron-Ladouceur. Responsivity optimization of a high-speed germanium-on-silicon photodetector. Opt. Express, 24, 27738-27752(2016).

    [248] L. Virot, D. Benedikovic, B. Szelag, C. Alonso-Ramos, B. Karakus, J.-M. Hartmann, X. Le Roux, P. Crozat, E. Cassan, D. Marris-Morini. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt. Express, 25, 19487-19496(2017).

    [249] G. Chen, Y. Yu, X. Xiao, X. Zhang. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt. Express, 24, 10030-10039(2016).

    [250] D. Zhou, G. Chen, S. Fu, Y. Zuo, Y. Yu. Germanium photodetector with distributed absorption regions. Opt. Express, 28, 19797-19807(2020).

    [251] Z. Jiang, Y. Yu, Y. Wang, D. Zhou, W. Deng, X. Zhang. High-power Si-Ge photodiode assisted by doping regulation. Opt. Express, 29, 7389-7397(2021).

    [252] Y. Zuo, Y. Yu, Y. Zhang, D. Zhou, X. Zhang. Integrated high-power germanium photodetectors assisted by light field manipulation. Opt. Lett., 44, 3338-3341(2019).

    [253] D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. Le Roux, P. Crozat. 25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures. Photon. Res., 7, 437-444(2019).

    [254] X. Hu, D. Wu, H. Zhang, W. Li, D. Chen, L. Wang, X. Xiao, S. Yu. High-speed lateral PIN germanium photodetector with 4-directional light input. Opt. Express, 28, 38343-38354(2020).

    [255] J. Cui, Z. Zhou. High-performance Ge-on-Si photodetector with optimized DBR location. Opt. Lett., 42, 5141-5144(2017).

    [256] B. Wang, Z. Huang, Y. Yuan, D. Liang, X. Zeng, M. Fiorentino, R. G. Beausoleil. 64  Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photon. Res., 8, 1118-1123(2020).

    [257] Y. Yuan, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, R. Beausoleil. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J. Sel. Top. Quantum Electron., 28, 3800508(2021).

    [258] L. Alloatti, R. J. Ram. Resonance-enhanced waveguide-coupled silicon-germanium detector. Appl. Phys. Lett., 108, 071105(2016).

    [259] C.-H. Lin, D.-W. Huang, T.-T. Shih, H.-C. Kuo, S.-W. Chang. Increasing responsivity-bandwidth margin of germanium waveguide photodetector with simple corner reflector. Opt. Express, 29, 10364-10373(2021).

    [260] J.-M. Lee, M. Kim, W.-Y. Choi. Series resistance influence on performance of waveguide-type germanium photodetectors on silicon. Chin. Opt. Lett., 15, 100401(2017).

    [261] Y. Shi, D. Zhou, Y. Yu, X. Zhang. 80  GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photon. Res., 9, 605-609(2021).

    [262] S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, A. Mai. High bandwidth, high responsivity waveguide-coupled germanium pin photodiode. Opt. Express, 23, 27213-27220(2015).

    [263] S. Lischke, A. Peczek, J. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer, C. Mai, S. Marschmeyer, M. Fraschke. Ultra-fast germanium photodiode with 3-dB bandwidth of 265  GHz. Nat. Photonics, 15, 925-931(2021).

    [264] S. A. Srinivasan, M. Berciano, P. De Heyn, S. Lardenois, M. Pantouvaki, J. Van Campenhout. 27  GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J. Lightwave Technol., 38, 3044-3050(2020).

    [265] S. A. Srinivasan, J. Lambrecht, D. Guermandi, S. Lardenois, M. Berciano, P. Absil, J. Bauwelinck, X. Yin, M. Pantouvaki, J. Van Campenhout. 56  Gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode. J. Lightwave Technol., 39, 1409-1415(2020).

    [266] X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, R. G. Beausoleil. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 6, 772-777(2019).

    [267] S. Assefa, F. Xia, Y. A. Vlasov. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 464, 80-84(2010).

    [268] L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, L. Vivien. Germanium avalanchereceiver for low power interconnects. Nat. Commun., 5, 4957(2014).

    [269] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen. Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product. Nat. Photonics, 3, 59-63(2009).

    [270] Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, M. Paniccia. High performance Ge/Si avalanche photodiodes development in Intel. Optical Fiber Communication Conference (OFC), OWZ1(2011).

    [271] Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, R. G. Beausoleil. 25  Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 3, 793-798(2016).

    [272] M. Huang, P. Cai, S. Li, L. Wang, T.-I. Su, L. Zhao, W. Chen, C.-Y. Hong, D. Pan. Breakthrough of 25  Gb/s germanium on silicon avalanche photodiode. Optical Fiber Communication Conference (OFC), Tu2D.2(2016).

    [273] G. Kim, S. Kim, S. A. Kim, J. H. Oh, K. S. Jang. NDR-effect vertical-illumination-type Ge-on-Si avalanche photodetector. Opt. Lett., 43, 5583-5586(2018).

    [274] S. Park, Y. Malinge, O. Dosunmu, G. Lovell, S. Slavin, K. Magruder, Y. Kang, A. Liu. 50-Gbps receiver subsystem using Ge/Si avalanche photodiode and integrated bypass capacitor. Optical Fiber Communications Conference and Exhibition (OFC), M3A.3(2019).

    [275] A. Samani, O. Carpentier, E. El-Fiky, M. Jacques, A. Kumar, Y. Wang, L. Guenin, C. Gamache, P.-C. Koh, D. V. Plant. Highly sensitive, 112  Gb/s O-band waveguide coupled silicon-germanium avalanche photodetectors. Optical Fiber Communication Conference (OFC), Th3B.1(2019).

    [276] B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W. Chen. 106  Gb/s normal-incidence Ge/Si avalanche photodiode with high sensitivity. Optical Fiber Communications Conference and Exhibition (OFC), M3D.2(2020).

    [277] C. Doerr, L. Chen. Silicon photonics in optical coherent systems. Proc. IEEE, 106, 2291-2301(2018).

    [278] S. Bernabé, Q. Wilmart, K. Hasharoni, K. Hassan, Y. Thonnart, P. Tissier, Y. Désières, S. Olivier, T. Tekin, B. Szelag. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid-State Electron., 179, 107928(2021).

    [279] https://ark.intel.com/content/www/us/en/ark/products/series/96621/intel-silicon-photonics-pluggable-optical-transceivers.html. https://ark.intel.com/content/www/us/en/ark/products/series/96621/intel-silicon-photonics-pluggable-optical-transceivers.html

    [280] E. El-Fiky, A. Samani, D. Patel, M. Jacques, M. Sowailem, D. V. Plant. 400  Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects. Opt. Express, 27, 10258-10268(2019).

    [281] H. Yu, P. Doussiere, D. Patel, W. Lin, K. Al-hemyari, J. Park, C. Jan, R. Herrick, I. Hoshino, L. Busselle, M. Bresnehan, A. Bowles, G. A. Ghiurcan, H. Frish, S. Yerkes, R. Venables, P. Seddighian, X. Serey, K. Nguyen, A. Banerjee, S. A. Asl, Q. Zhu, S. Gupta, A. Fuerst, A. Dahal, J. Chen, Y. Malinge, H. Mahalingam, M. Kwon, S. Gupta, A. Agrawal, R. Narayan, M. Favaro, D. Zhu, Y. Akulova. 400  Gbps fully integrated DR4 silicon photonics transmitter for data center applications. Optical Fiber Communications Conference and Exhibition (OFC), T3H.6(2020).

    [282] E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, I. Duzevik, M. Whitson, R. P. Millman, D. A. Atlas, M. R. Watts. 400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules. Optical Fiber Communication Conference (OFC), T3H.2(2020).

    [283] X. Zhang, D. Zheng, Z. Ying, Y. Li, M. Ding, D. Lam, S. Tu, R. Wu, X. Zhang, Y. Sun, X. Wang, X. Huang, T. Wang. Integrated silicon photonics transmitter in 400GBASE-DR4 QSFP-DD transceiver. Optical Fiber Communication Conference (OFC), M3A.2(2021).

    [284] Y. Zhao. Silicon photonic based stacked die assembly for 4 × 200-Gbit/s short-reach transmission. Optical Fiber Communication Conference (OFC), F2F.2(2021).

    [285] S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, J. Bauwelinck, N. Pleros, T. Alexoudi. 400  Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket chip-to-chip interconnects. J. Lightwave Technol., 38, 3366-3375(2020).

    [286] H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Yu. 800  Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res., 8, 1776-1782(2020).

    [287] S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. N. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, N. N. Tang, H. Potluri, M. Montazeri, H. Frish, R. A. Defrees, C. Seibert, A. Krichevsky, J. K. Doylend, J. Heck, R. Venables, A. Dahal, A. Awujoola, A. Vardapetyan, G. Kaur, M. Cen, V. Kulkarni, S. S. Islam, R. L. Spreitzer, S. Garag, A. C. Alduino, R. K. Chiou, L. Kamyab, S. Gupta, B. Xie, R. S. Appleton, S. Hollingsworth, S. McCargar, Y. Akulova, K. M. Brown, R. Jones, D. Zhu, T. Liljeberg, L. Liao. 1.6 Tbps silicon photonics integrated circuit and 800  Gbps photonic engine for switch co-packaging demonstration. J. Lightwave Technol., 39, 1155-1161(2021).

    [288] M. Wade. An error-free 1 Tbps WDM optical I/O chiplet and multi-wavelength multi-port laser. Optical Fiber Communication Conference (OFC), F3C.6(2021).

    [289] https://acacia-inc.com/product/coherent-interconnect-module-8/. https://acacia-inc.com/product/coherent-interconnect-module-8/

    [290] Z. Zheng, A. Mohammadi, O. Jafari, H. Sepehrian, J. Lin, X. Zhang, W. Shi. Silicon IQ modulator for 120  Gbaud QAM. European Conference on Optical Communication (ECOC), 1-4(2021).

    [291] L. Zhu, J. Zhou, J. Wang, Q. Zhang. Pre-equalization and bandwidth limitation for a 100-G-Baud 32 QAM all-silicon transmitter. IEEE Photon. Technol. Lett., 31, 1453-1456(2019).

    [292] S. Zhalehpour, M. Guo, J. Lin, Z. Zhang, H. Sepehrian, Y. Qiao, L. A. Rusch. All silicon IQ modulator with 1Tb/s line rate. Optical Fiber Communication Conference (OFC), W3D.6(2020).

    [293] S. Yamanaka, Y. Ikuma, T. Itoh, Y. Kawamura, K. Kikuchi, Y. Kurata, M. Jizodo, T. Jyo, S. Soma, M. Takahashi, K. Tsuzuki, M. Nagatani, Y. Nasu, A. Matsushita, T. Yamada. Silicon photonics coherent optical subassembly with EO and OE bandwidths of over 50  GHz. Optical Fiber Communication Conference (OFC), Th4A.4(2020).

    [294] S. Yamanaka, Y. Nasu. Silicon photonics coherent optical subassembly for high-data-rate signal transmissions. Optical Fiber Communication Conference (OFC), Th5F.2(2021).

    [295] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [296] A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, R. J. Ram. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [297] Q. Cheng, S. Rumley, M. Bahadori, K. Bergman. Photonic switching in high performance datacenters [Invited]. Opt. Express, 26, 16022-16043(2018).

    [298] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [299] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson. Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express, 16, 15915-15922(2008).

    [300] K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express, 23, 17599-17606(2015).

    [301] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, W. Zhu. Five-port optical router for photonic networks-on-chip. Opt. Express, 19, 20258-20268(2011).

    [302] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, W. Zhu. Microring-resonator-based four-port optical router for photonic networks-on-chip. Opt. Express, 19, 18945-18955(2011).

    [303] D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, K. Bergman. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsys. Nanoeng., 3, 16071(2017).

    [304] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, K. Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res., 7, 155-161(2019).

    [305] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol., 32, 505-512(2014).

    [306] X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, K. Bergman. Fast wavelength locking of a microring resonator. IEEE Photon. Technol. Lett., 26, 2365-2368(2014).

    [307] A. S. P. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. M. Saleh, J. E. Bowers, R. C. Alferness. On-chip wavelength locking for photonic switches. Opt. Lett., 42, 4934-4937(2017).

    [308] A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, K. Bergman. Broadband operation of nanophotonic router for silicon photonic networks-on-chip. IEEE Photon. Technol. Lett., 22, 926-928(2010).

    [309] A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, K. Bergman. Broadband silicon photonic electrooptic switch for photonic interconnection networks. IEEE Photon. Technol. Lett., 23, 504-506(2011).

    [310] P. Dasmahapatra, R. Stabile, A. Rohit, K. A. Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron., 20, 5900410(2014).

    [311] P. Chen, S. Chen, X. Guan, Y. Shi, D. Dai. High-order microring resonators with bent couplers for a box-like filter response. Opt. Lett., 39, 6304-6307(2014).

    [312] R. A. Soref, B. E. Little. Proposed N-wavelength M-fiber WDM cross connect switch using active microring resonators. IEEE Photon. Technol. Lett., 10, 1121-1123(1998).

    [313] Y. Goebuchi, M. Hisada, T. Kato, Y. Kokubun. Optical cross-connect circuit using hitless wavelength selective switch. Opt. Express, 16, 535-548(2008).

    [314] A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. Multi-wavelength selective crossbar switch. Opt. Express, 27, 5203-5216(2019).

    [315] A. S. P. Khope, S. Liu, Z. Zhang, A. M. Netherton, R. L. Hwang, A. Wissing, J. Perez, F. Tang, C. Schow, R. Helkey, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. 2λ switch. Opt. Lett., 45, 5340-5343(2020).

    [316] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., 13, 615-627(1995).

    [317] S. Chen, Y. Shi, S. He, D. Dai. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett., 41, 836-839(2016).

    [318] K. Suzuki, G. Cong, K. Tanizawa, S. H. Kim, K. Ikeda, S. Namiki, H. Kawashima. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9086-9092(2015).

    [319] M. Wang, A. Ribero, Y. Xing, W. Bogaerts. Tolerant, broadband tunable 2 × 2 coupler circuit. Opt. Express, 28, 5555-5566(2020).

    [320] H. Xu, D. Dai, Y. Shi. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers. Opt. Express, 29, 20617-20631(2021).

    [321] L. Song, H. Li, D. Dai. Mach–Zehnder silicon-photonic switch with low random phase errors. Opt. Lett., 46, 78-81(2020).

    [322] R. Ramaswami, K. Sivarajan, G. Sasaki. Optical Networks: A Practical Perspective(2009).

    [323] M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov. Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks. Opt. Express, 19, 47-54(2011).

    [324] S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, J. Chen. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res., 4, 202-207(2016).

    [325] L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, J. Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express, 24, 9295-9307(2016).

    [326] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2018).

    [327] H. Xu, D. Dai, Y. Shi. Silicon integrated nanophotonic devices for on-chip multi-mode interconnects. Appl. Sci., 10, 18(2020).

    [328] C. Sun, Y. Yu, G. Chen, X. Zhang. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett., 41, 3257-3260(2016).

    [329] C. Sun, Y. Yu, G. Chen, X. Zhang. On-chip switch for reconfigurable mode-multiplexing optical network. Opt. Express, 24, 21722-21728(2016).

    [330] Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 4, 1098-1102(2017).

    [331] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).

    [332] S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H. K. Tsang, D. Dai. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett., 42, 2802-2805(2017).

    [333] D. Gostimirovic, W. N. Ye. Compact silicon-photonic mode-division (de)multiplexer using waveguide-wrapped microdisk resonators. Opt. Lett., 46, 388-391(2021).

    [334] S. Wang, H. Wu, H. K. Tsang, D. Dai. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt. Lett., 41, 5298-5301(2016).

    [335] Y. Zhang, Y. He, Q. Zhu, C. Qiu, Y. Su. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photon. Res., 5, 521-526(2017).

    [336] R. B. Priti, O. Liboiron-Ladouceur. Reconfigurable and scalable multimode silicon photonics switch for energy-efficient mode-division-multiplexing systems. J. Lightwave Technol., 37, 3851-3860(2019).

    [337] G. Zhou, Y. Guo, L. Lu, J. Chen, L. Zhou. Silicon reconfigurable mode-selective modulation for on-chip mode-multiplexed photonic systems. Opt. Lett., 46, 1145-1148(2021).

    [338] C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, G. T. Reed. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing. Nanophotonics, 7, 1571-1580(2018).

    [339] L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, L. Zhang. General architectures for on-chip optical space and mode switching. Optica, 5, 180-187(2018).

    [340] D. Zhou, C. Sun, Y. Lai, Y. Yu, X. Zhang. Integrated silicon multifunctional mode-division multiplexing system. Opt. Express, 27, 10798-10805(2019).

    [341] X. Han, H. Xiao, Y. Jiang, G. Ren, P. Zhang, J. Tan, J. Yang, A. Mitchell, Y. Tian. Integrated non-blocking optical router harnessing wavelength- and mode-selective property for photonic networks-on-chip. Opt. Express, 29, 1251-1264(2021).

    [342] T. Zhou, H. Jia, J. Ding, L. Zhang, X. Fu, L. Yang. On-chip broadband silicon thermo-optic 2 × 2 four-mode optical switch for optical space and local mode switching. Opt. Express, 26, 8375-8384(2018).

    [343] H. Jia, S. Yang, T. Zhou, S. Shao, X. Fu, L. Zhang, L. Yang. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 8, 889-898(2019).

    [344] X. Cao, S. Zheng, N. Zhou, J. Zhang, J. Wang. On-chip multi-dimensional 1 × 4 selective switch with simultaneous mode-/polarization-/wavelength-division multiplexing. IEEE J. Quantum Electron., 56, 8400608(2020).

    [345] C. Zhang, S. Zhang, J. D. Peters, J. E. Bowers. 8 × 8 × 40  Gbps fully integrated silicon photonic network on chip. Optica, 3, 785-786(2016).

    [346] H. Xu, C. Liu, D. Dai, Y. Shi. Direct-access mode-division multiplexing switch for scalable on-chip multi-mode networks. Nanophotonics, 10, 4551-4566(2021).

    [347] S. Han, T. J. Seok, N. Quack, B.-W. Yoo, M. C. Wu. Large-scale silicon photonic switches with movable directional couplers. Optica, 2, 370-375(2015).

    [348] T. J. Seok, N. Quack, S. Han, R. S. Muller, M. C. Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).

    [349] C. Haffner, A. Joerg, M. Doderer, F. Mayor, D. Chelladurai, Y. Fedoryshyn, C. I. Roman, M. Mazur, M. Burla, H. J. Lezec, V. A. Aksyuk, J. Leuthold. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science, 366, 860-864(2019).

    [350] T. J. Seok, K. Kwon, J. Henriksson, J. Luo, M. C. Wu. Wafer-scale silicon photonic switches beyond die size limit. Optica, 6, 490-494(2019).

    [351] W. Pernice, T. Grottke, W. Hartmann, C. Schuck. Optoelectromechanical phase shifter with low insertion loss and 13π tuning range. Opt. Express, 29, 5525-5537(2020).

    [352] R. Baghdadi, M. Gould, S. Gupta, M. Tymchenko, D. Bunandar, C. Ramey, N. C. Harris. Dual slot-mode NOEM phase shifter. Opt. Express, 29, 19113-19119(2021).

    [353] A. Y. Takabayashi, H. Sattari, P. Edinger, P. Verheyen, K. B. Gylfason, W. Bogaerts, N. Quack. Broadband compact single-pole double-throw silicon photonic MEMS switch. J. Microelectromech. Syst., 30, 322-329(2021).

    [354] W. Jin, A. Feshali, M. Paniccia, J. E. Bowers. Seamless multi-reticle photonics. Opt. Lett., 46, 2984-2987(2021).

    [355] C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, M. Li. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photon., 6, 87-92(2018).

    [356] P. Xu, J. Zheng, J. K. Doylend, A. Majumdar. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon., 6, 553-557(2019).

    [357] H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, J. Chen. Miniature multilevel optical memristive switch using phase change material. ACS Photon., 6, 2205-2212(2019).

    [358] C. Zhang, M. Zhang, Y. Xie, Y. Shi, R. Kumar, R. R. Panepucci, D. Dai. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171-1176(2020).

    [359] J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, A. Majumdar. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).

    [360] H. Chen, H. Jia, J. Yang, Y. Tian, T. Wang. Ultra-compact switchable mode converter based on silicon and optical phase change material hybrid metastructure. Opt. Commun., 473, 125889(2020).

    Yaocheng Shi, Yong Zhang, Yating Wan, Yu Yu, Yuguang Zhang, Xiao Hu, Xi Xiao, Hongnan Xu, Long Zhang, Bingcheng Pan. Silicon photonics for high-capacity data communications[J]. Photonics Research, 2022, 10(9): A106
    Download Citation